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Abstract
In this work, a new procedure is demonstrated to retrieve the conservative and dissipative
contributions to contact resonance atomic force microscopy (CR-AFM) measurements from
the contact resonance frequency and resonance amplitude. By simultaneously tracking the
CR-AFM frequency and amplitude during contact AFM scanning, the contact stiffness and
damping were mapped with nanoscale resolution on copper (Cu) interconnects and low-k
dielectric materials. A detailed surface mechanical characterization of the two materials and
their interfaces was performed in terms of elastic moduli and contact damping coefficients by
considering the system dynamics and included contact mechanics. Using Cu as a reference
material, the CR-AFM measurements on the patterned structures showed a significant increase
in the elastic modulus of the low-k dielectric material compared with that of a blanket pristine
film. Such an increase in the elastic modulus suggests an enhancement in the densification of
low-k dielectric films during patterning. In addition, the subsurface response of the materials
was investigated in load-dependent CR-AFM point measurements and in this way a depth
dimension was added to the common CR-AFM surface characterization. With the new
proposed measurement procedure and analysis, the present investigation provides new insights
into characterization of surface and subsurface mechanical responses of nanoscale structures
and the integrity of their interfaces.

(Some figures may appear in colour only in the online journal)

1. Introduction

Novel developments in material properties engineering at the
nanoscale are greatly accelerated by advanced measurement
methods, and particularly by scanning probe microscopy
techniques that provide local property measurements at this
scale. For nanoscale mechanical property characterization,
the applicability and capabilities of contact resonance
atomic force microscopy (CR-AFM) [1, 2] have been
extensively demonstrated on a large variety of nanostructured
materials [3–12]. Based on observing the change in the
resonance state of an AFM probe in contact with the material
investigated, the CR-AFM signal is primarily converted into

calibrated maps of elastic moduli [4, 7, 11, 13, 14]. However,
when compliant materials are probed, their often attendant
viscous properties can also contribute to the AFM tip–sample
coupling and viscous effects become incorporated into the
resonant response of the probe [3, 9, 15, 16]. In order to
determine both conservative (elastic) and dissipative (viscous)
material properties, CR-AFM measurement and analysis
methods must be extended beyond the usual measurement of
the change in resonant frequency of the AFM cantilever probe.

In this work, CR-AFM measurements were performed
using a constant-excitation phase-locked-loop (PLL) detec-
tion [17] that allowed real-time monitoring of the cantilever
contact resonance frequency and resonance amplitude. This
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new approach enabled high spatial resolution CR-AFM
measurements of intrinsic material properties, namely elastic
modulus and contact damping coefficient. In addition,
load-dependent CR-AFM measurements [10, 18] were used
to investigate the depth dependence of the contact damping
on the materials probed. By providing a subsurface me-
chanical characterization, the load-dependent measurements
add a depth dimension to the common CR-AFM surface
characterization.

The materials probed were in the form of Cu
interconnects and low-k dielectric materials similar to those
used currently in integrated circuits. Maps of contact
resonance frequency and amplitude were used to observe
the elastic and viscous surface responses with nanoscale
resolution and identify heterogeneities at interfaces. The
need for such investigation comes from the difficulties
associated with the continuous shrinking of features in
integrated circuits, for which the mechanical integrity of Cu
interconnects and low-k dielectric materials raises serious
challenges [19, 20]. In the past few years, various scanning
probe microscopies such as ultrasonic force microscopy [21],
dynamic nanoindentation [22] and ultrasound holography [23]
have been used for structural defects and mechanical property
characterization of integrated circuits. Quantitative nanoscale
characterization of integrated Cu-low-k structures in terms of
elastic modulus and contact damping coefficient by CR-AFM
considerably extends these techniques [24–30].

2. Theoretical background

The mechanism of CR-AFM is relatively simple: the contact
between the AFM probe and the sample is vibrated by a
very small amplitude oscillation at frequencies in the kilohertz
to megahertz range to detect the resonance frequencies of
the system. Under such vibrations, the probe–sample contact
behaves like a spring, the stiffness of which is termed the
contact stiffness (refer to figure 1(a)). The probe–sample
system is modeled as a beam clamped at the cantilever base
and spring coupled at the other end through the contact
stiffness, k∗. The key measurement in CR-AFM is to associate
the change in the resonance frequency of the cantilever with
the elastic modulus of the material probed. This is performed
by first converting the measured resonance frequencies into
contact stiffness in accordance with the model used for
the dynamics of the system. Second, the contact stiffness
is then converted into the elastic modulus by considering
an appropriate contact model for the established contact
geometry. This approach is commonly followed in CR-AFM
measurements dedicated to observing the elastic response of
materials.

However, besides the conservative elastic element, the
probe–sample contact is characterized by a dissipative viscous
element as well. To consider both of these contributions,
the cantilever is modeled here as a distributed-mass
Euler–Bernoulli beam and the normal probe–sample coupling
as a Voigt–Kelvin element with a spring for the ideal
elastic element in parallel with a dashpot (damper) for the
ideal viscous element (refer to figure 1(b)) [31–33]. The

Figure 1. (a) Schematic diagram of a vibrated AFM probe brought
into contact with a sample surface. The mechanical oscillations are
transmitted into the sample through the spring coupling formed at
the probe–sample contact. (b) Schematic representation of the
probe–sample mechanical system with the representation of the
contact coupling as an ideal elastic spring coupled in parallel with
an ideal viscous damper.

damping response of such a vibrated system is readily
obtained by characterizing the shape of its resonance peak.
To determine the two parameters of interest, elastic modulus
and contact damping, either the entire frequency spectrum
around resonance is measured in point measurements [15,
16] or alternative pairs of two parameters (contact resonance
frequency and quality factor [27] or contact resonance
frequency and resonance amplitude [3]) are recorded during
AFM scanning. Ultimately, these methods provide equivalent
characterizations as using the contact resonance frequency
and another peak parameter (the peak height for the resonance
amplitude or the full width at half-height for the quality factor)
enables the shape of the resonance peak to be retrieved based
on the dynamics of the oscillator.

Mathematically, the elastic and viscous contact contribu-
tions are considered in the equation of the flexural vibration
amplitude y(x, t) along the cantilever through appropriate
boundary conditions for the forces and moments at the
coupling position (x = L in figure 1(b)):

EI∂4y/∂x4
+ ηairρA∂y/∂t + ρA∂2y/∂t2 = 0, (1)

with

y = u ∂y/∂x = 0 (2)

at the base of the cantilever, x = 0 and

∂2y/∂x2
= 0 EI∂3y/∂x3

= (k∗y+ γ ∗∂y/∂t) (3)

at the end of the cantilever, x = L. In the above equations,
E, I, ρ, A and kc are the Young’s modulus, cross-sectional
moment of inertia, density, cross-sectional area and stiffness
of the cantilever, respectively. The boundary conditions
in equation (3) reflect the CR-AFM configuration used
in this work, with the oscillation u = u0eiωt imposed on
the probe–sample system from the base of the cantilever
(as shown in figure 1(b)); this configuration is sometimes
referred to as ultrasonic AFM [2]. In another configuration of
CR-AFM known as atomic force acoustic microscopy [1], the
oscillation is supplied from underneath the sample, in which
case the boundary conditions are modified accordingly; a full
analysis of different CR-AFM configurations can be found
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in [33]. Lateral coupling was neglected in the present analysis
and the tip was considered to be located at the end of the
cantilever. Measurements made on the AFM probe used in this
work were consistent with these assumptions.

The two quantities of interest, contact stiffness k∗ and
contact damping coefficient γ ∗, are incorporated into the
CR-AFM signal, which is filtered from the AFM displacement
at the end of the cantilever [33]:

yL = u0
α3EI(cosαL+ coshαL)

α3EI81 − (k∗ + iωγ ∗)82
, (4)

where the complex wavenumber α is given by the dispersion
relation

α4
= (ω2

− iωηair)ρA/EI (5)

and 81 = 1 + cosαL coshαL and 82 = sinαL coshαL −
cosαL sinhαL. The damping of the system has two sources:
one source is the dissipation by motion of the cantilever
through the air, characterized by the coefficient ηair (s−1),
and the other is the dissipation through the tip–sample
coupling characterized by the contact damping coefficient
γ ∗ (N s m−1); a numerical analysis of the two damping
coefficients can be found in [9]. As indicated by equation (4),
the contact stiffness and contact damping regulate the
amplitude of the flexural vibrations at the end of the cantilever
for given working conditions, yL(u0, ω, ηair, k∗, γ ∗).

The above wave equations provide the mathematical
description for establishing the connection between the
resonance frequencies of the cantilever and the contact
stiffness in the presence of contact damping; they show
how the resonance state of the cantilever is tuned according
to the magnitude of the contact stiffness and damping
that characterize the probe–sample contact coupling. The
conversion of the contact stiffness into the elastic modulus
of the material probed is thence made by means of a contact
mechanics model applicable to the investigated contact
geometry. With negligible adhesion forces between the AFM
probe and the materials tested (as was observed for the
measurements performed in this work), the contact mechanics
model considered for the contact stiffness to elastic modulus
conversion was the Hertz model. Thus, for the contact made
between a spherical tip of radius RT and a flat surface under
an applied force F, the equation relating k∗ to the reduced
tip–sample elastic modulus E∗ is [34]

k∗ = (6RTFE∗2)1/3. (6)

The reduced elastic modulus E∗ is given in terms of the
indentation moduli of the tip, MT, and sample, MS:

1/E∗ = 1/MT + 1/MS. (7)

For elastically isotropic materials the indentation modulus is
simply expressed in terms of the Young’s modulus E and the
Poisson ratio ν and M = E/(1 − ν2). In the general case of
elastically anisotropic materials, the indentation modulus can
be numerically calculated along the indentation direction as a
function of the elastic constants of the indented material [35].

In the context of the above mathematical formalism, the
effect of contact damping on the contact resonance frequency

Figure 2. Damping effect on the first resonance frequency peaks of
an AFM probe brought into contact with two materials of different
elastic modulus: 25 GPa (dashed curves) and 135 GPa (continuous
curves). For each of these materials, the change in the damping
coefficient γ ∗ modifies the resonance peak amplitude and has no
observable effect on the resonance frequency.

and resonance amplitude of the cantilever will be analyzed
for materials with elastic properties similar to those probed
by CR-AFM in this work. The results of such analysis will
be used in a reverse procedure to convert the measured
contact resonance frequencies and resonance amplitudes into
the elastic moduli and damping coefficients. The effect of the
contact damping on the contact resonance peak is illustrated
in figure 2 for two materials of different elastic moduli,
25 GPa (comparable to that of a low-k dielectric material)
and 135 GPa (as for Cu). For each of these materials, as the
damping coefficient is varied over two orders of magnitude,
from 1 × 10−7 to 1 × 10−5 N s m−1, the contact resonance
frequency (peak location) remains unchanged but the shape
of the resonance peak is very sensitive to this variation.
The characteristic parameters of the modeled system were as
follows: cantilever stiffness kc = 9.5 N m−1, first resonance
in air f air

res = 115.1 kHz, ηair = 1000 s−1 and tip radius RT =

100 nm; the applied force at the probe–sample contact was
assumed to be 150 nN. The damping effect on the resonance
peak is observed in both the Q factor (the ratio of the
resonance frequency and the full width at half-height of the
resonance peak) and resonance amplitude Ac

res: as the damping
coefficient is increased the resonance peaks become broader
(smaller Q factor) and shorter (smaller Ac

res). For a given
oscillator, the quantities Q factor and Ac

res are interdependent
descriptions of the dissipation processes occurring within
the oscillator. Either of them can be used in data analysis
depending on the practical convenience in measurements. In
the following, the analysis will be made in terms of Ac

res, as
this is an experimental parameter that can be accessed directly
in CR-AFM operated in constant-excitation PLL modulation

3
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Figure 3. For two materials of different elastic modulus, 25 GPa
(dashed curves) and 135 GPa (continuous curves), the contact force
dependences of (a) the resonance frequency and (b) resonance
amplitude of the first contact mode are plotted for various contact
damping coefficients. The frequencies are normalized to the first
resonance frequency of the cantilever in air and the amplitudes to
the resonance amplitude of the first resonance peak in air.

as in this work; in constant-excitation PLL modulation [36]
the excitation amplitude of the cantilever is kept constant
while the phase shift between the driving and response signals
is used to track the change in the resonance frequency of
the cantilever. Both the contact resonance frequency f c

res
and resonance amplitude Ac

res used herein characterize the
first contact oscillation mode of the clamped-spring-coupled
cantilever.

The invariance of the contact resonance frequency with
damping is illustrated in the plots of figure 3(a) over the
nanonewton to micronewton range of the applied forces for
both materials considered; the contact resonance frequency
versus applied force response is specific to a given material
but is not affected by the change in contact damping. This
means that, in most cases, contact resonance frequency
measurements are sufficient in CR-AFM investigations
concerned only with determination of the elastic response
of materials. However, the applied force dependence of Ac

res
over the same force range exhibits a characteristic response
to contact damping. Unlike the Q factor (not shown here),
which depends monotonically on the contact stiffness, Ac

res
does not vary monotonically with the contact stiffness (or the
applied force as shown in figure 3(b)) but exhibits a maximum,

Figure 4. (a) Schematic and (b) scanning electron microscopy
image of Cu lines inlaid in a low-k interlayer dielectric. (c) The
separation between each Cu line and its surrounding dielectric is
made through a Ta/TaN diffusion barrier about 18 nm in thickness.

characteristic for a given contact damping. For a given contact
stiffness (or applied force), Ac

res still varies monotonically
with the contact damping; the amplitude increases with the
decrease in contact damping. The analysis becomes a little
bit more complicated when two different materials are probed
(e.g. test and reference materials in CR-AFM) because for
two different contact stiffnesses the amplitudes and contact
damping will not be necessary in a proportional relationship.
As can be observed in figure 3(b), the amplitude contrast
between the two materials with elastic moduli of 25 and
135 GPa could change as a function of the applied force:
for contact damping of 1 × 10−5 N s m−1, the amplitude is
larger on the stiffer material over the entire considered force
range. However, at smaller contact damping, the amplitude
is larger on the stiffer material only at small applied forces
and becomes smaller on the stiffer material at larger applied
forces. This peculiar relationship between the resonance
amplitude and contact damping needs to be considered for
a correct evaluation of the contact damping from CR-AFM
measurements made at a given applied contact force.

An equivalent analysis of the dynamics of the spring-
coupled cantilever was performed in [16] to relate the contact
stiffness to the quality factor of the second and third vibration
modes; the relationship between resonance amplitude and
contact damping (the resonance amplitude increases with the
applied force) can also be observed for the few frequency
spectra shown.

3. Experimental measurements

The sample investigated in this work consisted of Cu
lines inlaid in a low-k interlayer dielectric, as used in
microelectronic devices [37]. After the low-k dielectric film
was deposited on a Si substrate with an overlying SiO2
film, the low-k film underwent several plasma etches, cleans
and polishing steps to fabricate the Cu lines. In figure 4,
the cross section and the upper surface of the sample are
shown in schematic representations as well as a scanning
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Figure 5. Topography ((a), (d) and (g)), contact resonance frequency ((b), (e) and (h)) and resonance amplitude ((c), (f) and (i)) maps
recorded during CR-AFM scans at various loads: 50 nN ((a)–(c)), 110 nN ((d)–(f)) and 215 nN ((g)–(i)). The scan area was
650 nm× 1000 nm. The topography and contact resonance maps are shown in three-dimensional views and the resonance amplitude maps
in two-dimensional views.

electron microscopy image. The Cu lines are separated
from the dielectric by a tantalum nitride/tantalum (TaN/Ta)
diffusion barrier, which was about 18 nm in width and stood
a few nanometers above the dielectric surface. The local
variations in topography and materials of the sample provide
an excellent test vehicle for the CR-AFM capabilities of
mapping and identifying the nanoscale mechanical response
in terms of elastic modulus and contact damping.

In the present work, the detection of the contact
resonance frequency and resonance amplitude during regular
contact-mode AFM scans was performed by using a
SPECS Zurich GmbH PLL controller (Zurich, Switzerland)
operated in constant-excitation mode. The PLL controller was
connected through a signal access module to a MultiMode
V Veeco/Bruker scanning probe microscope (Santa Barbara,
CA, USA)3 and the measured resonance frequency and
amplitude were fed directly into the external channels of the
AFM controller for real-time imaging during scanning. The

3 Certain commercial equipment, instruments or materials are identified
in this document. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does
it imply that the products identified are necessarily the best available for the
purpose.

AFM probe used for CR-AFM mapping was a PPP-SEIH
integrated Si probe (NanoSensors, Neuchatel, Switzerland)
(see footnote 3) with a cantilever spring constant of 9.5 ±
0.2 N m−1 (measured by using the integrated thermal-noise
calibration method of the scanning probe microscope) and
the first two free resonance frequencies of 115.5 kHz and
721.3 kHz, respectively. From the measurement of the first
two contact resonance frequencies at a few applied forces, the
tip position along the cantilever was calculated to be within
0.3% of the end of the cantilever. All uncertainties quoted
in this work represent the standard deviations of repeated
measurements.

CR-AFM maps of 650 nm × 1000 nm (332 pixels ×
512 pixels) encompassing the end of a Cu line are shown
in figure 5 in the form of topography, contact resonance
frequency and resonance amplitude at three different applied
loads: 50, 110 and 215 nN. The topography images are
shown in the first column of figure 5 as acquired in contact
mode during CR-AFM and the contact resonance frequency
and resonance amplitude maps are shown in the second
and third columns of figure 5 as retrieved from the PLL
signals. While the imaged topography was the same at each
applied force, substantial differences are observed in both
the contact resonance frequency and amplitude maps as the

5
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applied force was varied. As the applied force was increased,
the contact resonance frequencies on both the Cu line and
the surrounding dielectric increased (different scale bars were
used in figures 5(b), (e) and (h)). However, inspection of the
amplitude contrast reveals that a larger amplitude on Cu than
on the dielectric was observed at 50 nN whereas at greater
loads this contrast almost vanishes. The TaN/Ta diffusion
barrier is clearly visible in each image: in the topography
the barrier stands a few nanometers above the surface plane;
in the contact resonance frequency the barrier has a contrast
intermediate to that of the Cu and low-k dielectric material;
and in the resonance amplitude maps an inversion in the
contrast for the barrier can be observed, passing from a
smaller amplitude at 50 nN to a larger amplitude at 215 nN.
A few structural defects in the Cu line (two dots close to
the top end and a more extended feature at the bottom) are
observed in the contact resonance frequency and resonance
amplitude maps with greater contrast at smaller applied forces
where the contact radius was reduced. As the contact radius
was increased with the increase in the applied force (from
top to bottom in figure 5), the contrast around these defects
progressively vanished.

Individual profiles across the imaged Cu line are shown
in figure 6. In the topographic profile (figure 6(a)) the
AFM tip introduced significant dilation effects around the
walls of the TaN/Ta diffusion barrier. The passage of the
tip over the barrier is clearly observed also in the contact
resonance frequency and amplitude profiles. As the barrier
stands above the rest of the surface, the contact geometry
changes dramatically over the edge, so a clear conversion
of the measured contact resonance frequency into the elastic
modulus of this barrier is difficult as the contact area change
during passage over the barrier is required. At each applied
force, clear plateaus in the contact resonance frequency over
the Cu line are observed, most likely when the tip was not in
contact with any of the delimiting edge barriers. The edges
are also marked clearly in the resonance amplitude profiles.
At 50 nN, the amplitude on the Cu line is greater than on
the dielectric and the barrier. However, at greater applied
forces, the amplitude contrast changed such that the resonance
amplitude was greater on the TaN/Ta barriers than on the Cu
and low-k dielectric material. As described in section 2, to
interpret this amplitude contrast as a function of applied force,
the dynamics of the probe–sample system needs to be properly
considered as a function of the applied load.

4. Results and discussion

Besides the above qualitative statements, the contact
resonance frequency and resonance amplitude maps can
also be analyzed quantitatively. Moreover, by performing
CR-AFM at different applied forces (or equivalently
different indentation depths), possible depth-dependent
inhomogeneities in the elastic and viscous response of
materials can be revealed. Thus, the contact resonance
frequency scans shown in figures 5(b), (e) and (h) provided
the average contact resonance frequencies on Cu and low-k

Figure 6. Cross-section profiles of the maps shown in figure 5:
(a) topography, (b) contact resonance frequency and (c) resonance
amplitude at various applied forces.

dielectric material at three different applied forces. These
average values were used to adjust the fitted curves of the
contact resonance frequency versus applied force shown in
figure 7 for each material. By determining the indentation
moduli from CR-AFM maps at a few different applied
forces rather than from point measurements or maps at a
single given applied force, the measurement uncertainty is
greatly reduced [18]. In the case of Cu, the fitted curve
was calculated by considering the tip radius as a fitting
parameter and using 165 and 135 GPa for the indentation
moduli of Si and Cu; the best fit was provided by an RT
of (100 ± 20) nm. With this value for the tip radius, the
contact resonance frequency versus applied force dependence
for the low-k dielectric material was best fitted by an
indentation modulus of (25 ± 3) GPa. The uncertainties
generated by the tip radius estimation in the calculated fitting
dependences for the average contact resonance frequency
versus the applied force of the two materials are shown in
figure 7. In a previous work [18] it has been found that the
elastic modulus of the same low-k dielectric material in the
form of an unpatterned pristine film was around 10–12 GPa.
This pronounced stiffness enhancement indicates a change in
the elastic properties of the low-k dielectric material during
its patterning into forming the lines. It is conceivable that

6
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Figure 7. Average values of the contact resonance frequencies on
Cu and low-k dielectric material from the maps shown in figures
5(b), (e) and (h) at three different applied forces; the standard
deviations of these average frequencies were within 2 kHz, which is
about the size of the symbols. The force dependences of the
measured contact resonance frequencies were used as fitting
constraints for the indentation moduli of the reference (Cu) and test
(low-k dielectric) materials. The data scattering around each
calculated curve was considered by an uncertainty of 20 nm in the
estimated radius of the AFM probe.

structural densification via plasma treatment could induce not
only a material stiffening but also an increase in the dielectric
constant of low-k materials during processing.

Using the determined elastic moduli, the average values
of the resonance amplitudes measured at 50, 110 and 215 nN
(refer to figures 5(c), (f) and (i)) were used to determine the
contact damping coefficients of the two materials. However,
no single contact damping coefficient was found to provide
a good fit for either Cu or low-k dielectric material. Instead,
the pronounced variations in the resonance amplitudes at the
forces applied in measurements indicated a possible depth
dependence for the contact damping, with a decay in the
contact damping below the surface. To further investigate this
behavior, load-dependent CR-AFM point measurements were
performed at separate locations on Cu and low-k dielectric
material, with the resonance amplitude recorded continuously
as the AFM probe was brought into and out of contact with
the sample.

Examples of force and resonance amplitude responses
during approach and retract force–displacement measure-
ments at locations on Cu and low-k dielectric material
are shown in figure 8. The PLL frequency bandwidth was
adjusted only for contact resonance detection, which allowed
resonance tracking only in contact and not out of contact; the
amplitudes in figures 8(a) and (b) are resonance amplitudes
only during contact. From the examples shown in figure 8,
it can be observed that, for the range of the applied forces
used, the resonance amplitude on the dielectric increased
continuously as the applied force was increased and the
resonance amplitude on the Cu first increased with the applied
force and then decreased. These characteristic responses were
consistently obtained in alternating measurements on the two
materials. Such dependences were observed in the theoretical
analysis discussed in section 2 but no good fits would be
obtained here if a constant contact damping coefficient is
assumed for each material. Instead, these load dependences

Figure 8. (a) and (b) Resonance amplitude and (c) and (d) force versus piezo-displacement during approach and retract excursions of the
AFM probe on Cu and low-k dielectric material.

7
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Figure 9. Measurements and theoretical curves for the resonance
amplitude on Cu and low-k dielectric materials. The experimental
values were extracted from load-dependent CR-AFM measurements
and the fits (continuous lines) were calculated by considering an
exponential depth decay of the damping coefficient as an adjustable
parameter for each material. In contrast with the case of contact
damping, the resonance amplitude would decay monotonically with
increasing applied force when no contact damping is present
(dashed line).

exhibited by the resonance amplitudes were retrieved when
an exponential decay for the contact damping coefficient γ ∗

as a function of the applied force F (or equivalently the elastic
deformation d) was considered:

γ ∗ = γ ∗0 exp[−F/F0] = γ
∗

0 exp[−(d/d0)
3/2
], (8)

where the parameters F0 and d0 represent the force and
deformation decay constants, respectively; γ ∗0 stands for the
surface contact damping coefficient. Such dependences for the
contact damping coefficients were considered in calculating
the fitted curves shown in figure 9 for the resonance amplitude
versus applied force measurements, with a different decay
constant in the contact damping coefficient for each material.
It can be observed that, as the applied force increases,
the effect of contact damping on the resonance amplitude
diminishes and the theoretical curves of the resonance
amplitude with and without contact damping overlap each
other. This means that, in the limit of large applied forces,
the viscous dissipation diminishes and the coupling becomes
essentially elastic (assuming that the elastic regime is still
valid at such large applied forces).

The proposed depth-dependent behavior for the damping
coefficient reproduced very well the measured damped
resonance amplitudes as a function of the applied force, on
the low-k dielectric material up to forces of 150 nN and
on Cu up to forces of 50 nN. Although the quantitative
agreement is less accurate for Cu at applied forces greater than
50 nN, the qualitative dependence captures realistically the
contact damping response on this material; the measurements
indicate a much more pronounced damping on Cu than that
considered by the exponential decay. In other words, the
contact damping decays more slowly with applied force on the
low-k dielectric material than on Cu. However, the damping
is observed to be similar in both materials at the surface and
this can be rationalized with the observation that right at the
surface the main contribution could come from adhesion. As
can be observed in the force–displacement measurements,
the adhesive forces for both materials are comparable. In
figure 10 the calculated subsurface decays of the contact
damping coefficients are shown for the two materials as
functions of applied force and deformation. From figure 10(a),
it can be observed that, at a given applied force, a stronger

Figure 10. (a) and (b) The applied force and depth-dependent exponential decays of the contact damping coefficients of Cu and low-k
dielectric materials. The curves were calculated from the fits shown in figure 9 and underestimate the damping attenuation on Cu at applied
forces larger than 50 nN.

8
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damping occurs on the low-k dielectric material than on Cu,
e.g. the attenuation ratio between the two materials is about
3 at an applied force of 50 nN and about 8 at an applied
force of 100 nN (and is even greater, considering that the
assumed exponential decay for the depth dependence of the
damping coefficient underestimates the measurements). From
the depth dependences of the damping coefficients shown in
figure 10(b), it can be judged that the same contact damping
is associated with larger deformations on the low-k material
than on Cu, e.g. a 1 × 10−6 N s m−1 damping coefficient
corresponds to a deformation about four times larger on the
low-k material than on Cu. A negligible contact damping on
Cu will be within a quarter of a nanometer and on the low-k
material the attenuation of the contact damping will occur for
deformations of the order of a nanometer.

5. Summary

The conservative (elastic modulus) and dissipative (contact
damping) contributions to CR-AFM measurements on
integrated Cu-low-k structures were resolved in this study.
The measurement analysis was based on two measurable
quantities, the contact resonance frequency and the resonance
amplitude. For the elastic and viscous properties of the
materials investigated, it was found that the contact resonance
frequency depends almost entirely on the elastic modulus.
However, the resonance amplitude is a function of both the
elastic modulus and contact damping. Thus, by measuring
both the contact resonance frequency and the resonance
amplitude, as in the example shown for integrated Cu-low-k
structures, the contact damping response of materials probed
can be retrieved. From single-point CR-AFM measurements
made at shallow depth indentations, the resonance amplitude
response of the materials revealed a depth dependence of
the contact damping. The superficial contact damping was
found to persist in nanometer-size deformations of the low-k
dielectric material and was significantly attenuated in the
Cu. The depth decay of the contact damping of these
two materials is inversely correlated with their stiffness.
By providing simultaneous elastic modulus and contact
damping measurements, the CR-AFM methodology used here
adds new capabilities to the existing AFM-based techniques
dedicated to mapping the viscoelastic mechanical response of
materials at the nanoscale.
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