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The random buckling patterns of nanoscale dielectric walls are analyzed using a nonlinear multi-

scale stochastic method that combines experimental measurements with simulations. The dielectric

walls, approximately 200 nm tall and 20 nm wide, consist of compliant, low dielectric constant

(low-k) fins capped with stiff, compressively stressed TiN lines that provide the driving force for

buckling. The deflections of the buckled lines exhibit sinusoidal pseudoperiodicity with amplitude

fluctuation and phase decorrelation arising from stochastic variations in wall geometry, properties,

and stress state at length scales shorter than the characteristic deflection wavelength of about

1000 nm. The buckling patterns are analyzed and modeled at two length scales: a longer scale (up

to 5000 nm) that treats randomness as a longer-scale measurable quantity, and a shorter-scale

(down to 20 nm) that treats buckling as a deterministic phenomenon. Statistical simulation is used

to join the two length scales. Through this approach, the buckling model is validated and material

properties and stress states are inferred. In particular, the stress state of TiN lines in three different

systems is determined, along with the elastic moduli of low-k fins and the amplitudes of the small-

scale random fluctuations in wall properties—all in the as-processed state. The important case of

stochastic effects giving rise to buckling in a deterministically sub-critical buckling state is demon-

strated. The nonlinear multiscale stochastic analysis provides guidance for design of low-k struc-

tures with acceptable buckling behavior and serves as a template for how randomness that is

common to nanoscale phenomena might be measured and analyzed in other contexts.

[http://dx.doi.org/10.1063/1.4943615]

I. INTRODUCTION

The central limit theorem of statistics1,2 tells us that the

effect of random fluctuations on the mean properties of an

object should increase as the size of the object decreases—

approximately as the inverse square-root of object volume.

Hence, nanoscale components and materials incorporating

nanoscale structure are subject to enhanced variability and

randomness, leading to challenges in quantitative nanoscale

materials science and engineering. Other challenges related to

nanoscale components and materials have received much

attention, such as the need for precise dimensional metrol-

ogy,3 the computational property determination,4,5 and the

presence of size effects.6–9 It has also been observed that hier-

archical models of materials behavior must incorporate the

effects of the stochastic nature of materials, particularly at

smaller scales.10 It is less commonly noted, however, that the

behavior of smaller components and microstructures is more

sensitive to uncontrollable fluctuations in geometry and prop-

erties. Generalized stochastic models incorporating such fluc-

tuations can be cumbersome to develop and analyze, however,

and it is thus helpful to find simple problems that are techno-

logically or scientifically worthy of study such that specific

stochastic models can be developed and applied. The random

buckling of nanoscale interlayer dielectric (ILD) trench walls

(Fig. 1 and Refs. 11–16) is such a problem.

Buckling occurs in slender structures under large com-

pressive loads: The compressive load overwhelms the

stiffness of the structure so that it deflects (buckles) perpen-

dicularly to the direction of load. The most well-known

example is Euler-buckling of columns,17 in which the maxi-

mum compressive load that can be supported by a column

before buckling is proportional to the column second areal

moment but inversely proportional to the square of the col-

umn length. Hence, slender (large length/transverse dimen-

sion) structures are susceptible to buckling. The problem of

nanoscale dielectric wall buckling arises in microelectronics

devices, in which performance can be enhanced by using

nano-width metal electrical interconnection lines lying in

low-permittivity (low-k) ILD trenches with nano-width

walls.13 Unfortunately, the technological electrical require-

ments for nanoscale ILD trenches coincide with the criteria

for mechanical buckling of the trench walls. ILD trenches

are often lithographically patterned using a hard TiN mask

with large Young’s modulus (150 GPa to 400 GPa) and

incorporating a large compressive stress (>1 GPa). The thin

mask is etched into long, thin strips and without additional

support these slender structures would surely buckle. The

underlying ILD trench wall stabilizes the TiN strips against

buckling, but only weakly. The low electrical permittivity of

the ILD is accompanied by small Young’s modulus

(�10 GPa), and ILD walls must be slender for enhanced

interconnect density and tall for reduced electrical resistance

of the intervening metal, all characteristics that reduce their

ability to mechanically stabilize the TiN hard mask.

Consequently, the trench walls frequently buckle en masse,

forming oscillatory patterns characterized by large randomness

evident in amplitude fluctuations and poor phase correlation
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(Figs. 1(b)–1(d)). Due to the technological implications of high

performance interconnects,11,12 it is desirable to have a vali-

dated quantitative model that allows buckled arrays of ILD

walls to be analyzed and to assist in structure and process

design to avoid buckling in future iterations. This need can only

be fully met with a model that is both nonlinear and stochastic.

Prior quantitative treatment of ILD trench wall buckling

has applied linear deterministic methods.13,15,16 Deterministic

buckling models inevitably predict the formation of perfectly

periodic deflections; however, measured buckling deflections

are clearly pseudo-periodic, exhibiting both phase decorrelation

and amplitude fluctuations (Figs. 1(b)–1(d)). More broadly,

nanoscale and microscale buckling have some history in the lit-

erature including nonlinear modeling, but with less attention

paid to random behavior. Some studied systems had negligible

randomness,18–24 where the need for extensive analysis could

be intuitively dismissed. These instances tended to occur at the

micro-scale. In other studies, randomness was simply neglected

based on the assumption that deterministic models could pro-

vide sufficiently accurate predictions of mean observations.25–31

A problem with this assumption for both ILD trench wall mod-

els and other buckling models was that it rendered qualitative

validation of models through comparison with experiment sus-

pect; a deterministic model will always appear too ideal, so

belief that stochastic effects are negligible must be maintained

when making the comparison. Equally important, it remained

untested whether the fundamental differences between stochas-

tic experimental systems and deterministic models might give

rise to quantitative errors in predictions and inferred values.

Recently, it was hypothesized that large deviations from deter-

ministic models of trench-wall buckling might result from sto-

chastic effects.16 The importance of incorporating randomness

in models used for prediction or analysis will vary from system

to system and with the quantitative inferences to be drawn, but

the importance will not be known a priori.
In other contexts, randomness has been treated directly.

For example, in modeling or analyzing systems with large

thermal fluctuations, randomness was understood a priori,
e.g., Refs. 32–34. In some examples of multiscale modeling

and measurement, shorter-scale randomness was measured

and modeled but then homogenized to create a longer-scale

deterministic model, e.g., Refs. 35–40. In the case of interest,

ILD trench wall buckling, longer-scale observed random

behavior (the aforementioned buckling amplitude variability

and phase decorrelation) results from random fluctuations at

smaller scales that cannot possibly be measured directly: In

particular, local variations in the TiN compressive stress, in

the cross-sectional geometry of the ILD trench wall and over-

lying TiN mask, and in the elastic moduli of the ILD and mask

all lead to small-scale random fluctuations in the driving and

resisting forces, and hence net force, for wall buckling.

To overcome this challenge, the shorter-scale random-

ness is determined here indirectly from its measurable effects

at the longer scale. Although somewhat counterintuitive, this

approach serves to determine both the qualitative and quanti-

tative effects of randomness. The approach is akin to a rider

in a car determining how smooth or bumpy a road is from

knowledge of how their car works and how the ride feels;

direct inspection of the bumps is not required. Three samples

of buckled ILD trench wall structures are analyzed here

using measurements and modeling at two length scales. The

shorter-scale ranges from about 20 nm, the smallest cross-

sectional dimension, to about 500 nm, the half-wavelength of

a typical buckling oscillation. This scale is the domain of

buckling mechanics. The longer-scale ranges from about

500 nm to 5000 nm and is important for modeling and inter-

preting the gross buckling morphology. The resulting simu-

lations of randomness in trench-wall deflections are

compared with experimental measurements. Inferred mate-

rial properties and state of ILD trench walls and hard-mask

are compared with measurements of similar materials and

measurements made prior to lithography, and stochastic

effects on inferred properties and state are assessed. All anal-

ysis inputs come from measurements of as-processed sam-

ples, an important consideration when the possible effects of

etching on material state and property are considered.15

II. MATERIALS AND MICROSCOPY

Transmission electron microscopy (TEM) and atomic

force microscopy (AFM) measurements of samples of three

patterned ILD structures (S1, S2, and S3) were studied. The

ILD samples were used in a similar study16 and correspond to

FIG. 1. Buckled ILD trench walls capped

with TiN hardmask. (a) Schematic cross

section of complete stack of TiN-masked

ILD trenches on a Si wafer. (b) Scanning

electron microscope (SEM) image of

masked ILD trench walls (from Sample

S1). In the foreground, the ILD walls

have been scratched off to reveal wall

height and deflected wall profile. Scale-

bar is 1lm. (c) and (d) AFM images of

buckled trench walls from samples S2

and S3, respectively. Scale-bars are 1lm.

(e) and (f) Cross-section TEM images of

samples S2 and S3, respectively. Scale-

bars are 100 nm.
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samples C, A, and B therein. Each sample had different dimen-

sions or materials and different buckling characteristics.

A. Patterned ILD structures

The stack structure of the patterned ILD samples (Fig.

1(a)) consisted of five layers.16 From bottom to top: Layer 1

was a 300 mm diameter (100) Si wafer. Layer 2, 100 nm

SiO2, was deposited by chemical vapor deposition (CVD)

directly on the Si wafer. Layer 3, 2 nm dense (k¼ 4.8)

SiOC:H etch stop film, was deposited by plasma enhanced

CVD (PECVD).41 Layer 4, low-k a-SiOC:H (k¼ 2.65, sam-

ple S1) or a-C:H (k¼ 2.25, samples S2 and S3) ILD films,

was deposited on the SiO2/SiOC:H film stack by PECVD42

and spin-on deposition, respectively.43 Layer 5, 20 nm to

40 nm TiN hardmask, was deposited by standard physical

vapor deposition methods.13

The ILD geometry consisted of long patterned trenches

with thin, high aspect-ratio walls as in Fig. 1, as well as wide

regions (�300 nm) of unetched area that enabled measure-

ment of the TiN modulus of each sample, Table I.16 The

trench walls areas exhibited buckling and were the focus of

study. Etching depth (wall-height) is one of the main param-

eters that determines buckling:13,15,16 Sample S2 (Figs. 1(c)

and 1(e)) has a width similar to sample S3 (Figs. 1(d) and

1(f)), about 35 nm, but a different height. Sample S2 is

206 nm tall, while sample S3 is 223 nm tall. The larger buck-

ling amplitude of the more deeply etched sample S3 is clear.

B. Cross-sectional microscopy

Precise measurements of the ILD trench wall cross-sections

were obtained from TEM. Samples were prepared using a focused

ion beam. Both high-resolution TEM and high-angle dark field

scanning TEM (STEM) images were recorded using an FEI Titan

TEM/STEM (Hillsboro, Oregon)44 operated at 300 kV. Overall

heights and width profiles as well as the boundaries between the

TiN mask and the ILD were measured from TEM images. Slight

variations in the widths were observed along the walls. See

Appendix A45 for more details. Average wall heights for each

sample are reported in Table I. These measured dimensions were

used as inputs for finite element modeling (FEM).

C. Buckling deflections

AFM measurements of buckled ILD trench walls were

provided (Figs. 1(c) and 1(d)) for each sample along with

inferred buckling deflections, v, vs. position, x, vðxÞ. Fig. 2(a)

shows examples of measured lateral deflections of ILD trench

walls (black lines). (It will be shown later that the deflection

uncertainty was about 60.8 nm as indicated by modeling of

the high-frequency statistical noise (Appendix C.3 (Ref. 45)).)

The pseudo-periodic nature of the deflections is clearly seen

when contrasted with idealized periodic oscillations of similar

lateral scales and magnitudes (thick pink lines).

The pseudo-periodic deflections can best be described as

a stationary random (or stochastic) process.46,47 Thus, a ro-

bust characterization of the ILD trench-wall buckling must

employ stochastic methods. As each measured deflection

profile contained only a small number of oscillations, it

seemed that real-space methods for deflection analysis would

provide better precision and detail than reciprocal-space

methods. The deflection autocorrelation was calculated for

each sample: CvðDxÞ¼def
vðxÞvðxþ DxÞ, where the overbar

indicates an average over all measured x values and all line

TABLE I. Measured properties and deflection statistics of buckled walls.

Sample S1 Sample S2 Sample S3

TiN Young’s modulus, ETiN (GPa)a 210 6 17 186 6 14 186 6 14

Wall height (nm)b 200 6 2 206 6 1 223 6 2

Mean square-deflection, �2 (nm2)c 206 6 14 47.0 6 3.9 462 6 34

Fourth moment of deflection, �4

(103 nm4)c

78.4 6 9.4 5.74 6 0.99 417 6 55

aAs reported.16

b6 value indicates standard deviation of measurements.
c6 value indicates standard error of fitted mean.

FIG. 2. Measured long-scale buckling morphology for samples S1, S2, and S3. (a) Black lines show examples of deflection profiles measured by AFM. Pink

periodic sinusoids with constant amplitude and perfect phase correlation are shown in the background for contrast. Both black and pink curves have the same

characteristic wavenumber and root mean-square amplitude. (b) Deflection autocorrelations: Dark-gray shows uncertainty band for mean measured autocorre-

lation at approximately 95% confidence (two standard deviations). Pink periodic sinusoids are shown in the background illustrating autocorrelation for hypo-

thetical deterministic case with constant amplitude and perfect phase correlation.
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profiles. It also proved very important to characterize the am-

plitude fluctuations, so the fourth deflection moment (v4 )

was also calculated. Fig. 2(b) shows the autocorrelations for

samples S1, S2, and S3 as dark-gray bands, each calculated

from about 160 ILD trench wall deflections. The width of

the bands indicates the estimated uncertainty at about 95%

confidence. The value at zero separation is the mean-square

deflection, v2 ¼ Cvð0Þ. See Appendix B45 for numerical

details. Oscillations in the autocorrelation indicate the char-

acteristic wavenumber, while the decay of the autocorrela-

tion to zero for large values of Dx indicates phase

decorrelation. The decay is to be contrasted with the infinite-

range autocorrelation of a sinusoid with perfect phase coher-

ence (Fig. 2(b), thick pink lines). Three 5-lm square AFM

images of different locations were analyzed for each sample.

III. STOCHASTIC MULTILSCALE ANALYSIS

The stochastic multiscale analysis of the buckling data

had three stages, beginning with longer-scale analysis, mov-

ing to shorter-scale methods, and then returning to the longer

scale. The longer-scale analyses employed stochastic meth-

ods that extracted information from the manifest random

behavior of the ILD-trench wall deflections, while the

shorter-scale analysis employed exclusively deterministic

methods to avoid the burden (or impossibility) of measuring

shorter-scale randomness. The information flows between

the length-scales, measurements, analysis stages, and

expected results are illustrated in Fig. 3.

In the first stage, longer-scale modeling and measure-

ments were used to generate a succinct statistical description

of the pseudo-periodic buckling of the ILD-trench walls. In

the second stage, shorter-scale buckling mechanics was mod-

eled via FEM using inputs from the first stage statistical analy-

sis and the TEM cross-section measurements. Measured

mechanical properties16 were used to calibrate the overall

stress scales of the FEM outputs. In the third stage, the first-

stage mathematical stochastic model was refined using statisti-

cal inputs from the first stage of analysis and calibrated physi-

cal inputs from the shorter-scale second stage of analysis. The

refined physical model was then used to extract the TiN mask

stress and to simulate buckling deflections for method valida-

tion. Input and output quantities are given in Table II.

A. Mathematical stochastic model

The purpose of the first analysis stage was to extract useful

information from the measured deflection autocorrelations

FIG. 3. Diagram of the information flow for the nonlinear multiscale stochastic buckling analysis. The measurements and analyses are labeled by section num-

ber in text.

TABLE II. Quantities used in and obtained from nonlinear multiscale stochastic buckling analysis.

Sample S1 Sample S2 Sample S3

Characteristic wave number, q0 (rad lm�1)a 6.803 6 0.041 5.071 6 0.042 4.547 6 0.040

Correlation length, l (nm)a 701 6 36 554 6 30 805 6 51

Characteristic wavelength, k0 (nm)b 923.6 6 5.6 1239 6 10 1381 6 12

ILD modulus ratio, EILD/ETiN (10�3) 23.1 24.4 25.3

ILD modulus, EILD (GPa) 4.85 4.54 4.71

Critical stress, r0 (GPa) 1.715 1.632 1.178

Wavenumber sensitivity, rqq (GPa lm2) 92.4 138.5 113.5

Amplitude sensitivity, rAA (MPa nm�2) 2.73 1.277 1.057

Phase decorrelation, rpd 0.0836 1.880 0.0894

Amplitude fluctuation, raf 1.230 1.733 1.302

Stochastic correction, f (rpd, raf) 0.861 �0.934 0.818

Inferred TiN stress, r (GPa) 2.68 1.520 1.978

Fractional stochastic stress correction (%) �5.8 �15.3 �9.0

a6 value indicates standard error from fit.
b6 value propagated from q0 estimated uncertainty.
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(Sec. II C), namely, the characteristic deflection wavenumber,

q0, and the phase decorrelation length, l. Initially, the empirical

autocorrelations were fit with exponentials or Gaussians that

modulated sinusoidal oscillations. This function-guessing

approach failed to give good fits to the data and lacked any con-

nection to an appropriate physical or mathematical model. To

find a better and more meaningful fit, a common mathematical

model describing stable pattern formation48 was chosen and

augmented with stochastic perturbing forces. This model

allowed the autocorrelations to be expressed using only a few

parameters that could be incorporated into later analysis stages.

The mathematical stochastic model employs the method

of amplitude functions that was developed to describe con-

vection flows49,50 and has since gained broad use in the study

of pattern formation.48 The buckling deflection vðxÞ was

decomposed into a product of a spatially varying complex

amplitude function, AðxÞ, and a regular periodic oscillation

such that vðxÞ ¼ Re½AðxÞ eiq0x�.48 The role of AðxÞ in describ-

ing a spatially varying amplitude is illustrated in Fig. 4, in

which the modeled deflection (black) oscillates between the

upper and lower bounds, 6jAðxÞj (gray). The phase decorre-

lation results from variations in the complex phase of AðxÞ
(not shown). For the longer-scale governing equation, a vari-

ant of the ubiquitous Ginzburg-Landau (G-L) form was used

that is useful for describing pattern formation with stable

characteristic wavenumber and amplitude48,51

rAA jA xð Þj2 � A2
0

� �
� 1

2
rqq@

2
x

� �
A xð Þ ¼ F xð Þ; (1)

where A0 is the equilibrium amplitude of an unperturbed sys-

tem, rAA and rqq are unknown coefficients, and FðxÞ is the

perturbing generalized stochastic force. Later, the unknown

rAA and rqq are shown to be the sensitivities of the buckling

stress to deflection amplitude and wavenumber, respectively

(Sec. III C). The perturbing force, FðxÞ (right side), repre-

sents the random fluctuations occurring throughout the ILD

walls and TiN caps that would tend to drive the departure of

buckling from perfect periodicity, for example, geometric

imperfections and fluctuations in stiffness and stress. The

form of the perturbing force was determined phenomenologi-

cally by finding the simplest mathematical expression

capable of simulating the observed stochastic fluctuations as

discussed in Sec. III C. The G-L form (left side) can be

derived more rigorously using the method of multiple scales

and assumes that the buckling behavior is only weakly non-

linear. Similar weakly nonlinear approximations have been

applied to deterministic film buckling.21,29,30 Further discus-

sion of the form of Eq. (1) is given in Appendix C.1.45

Despite its abstract form and unknown coefficient val-

ues, Eq. (1) is very useful: Setting FðxÞ as additive white

noise, Eq. (1) was solved approximately for the autocorrela-

tion of the amplitude function, CAðDxÞ. Subsequently, the

autocorrelation of the deflection was found to have the form

Cv Dxð Þ ¼ v2 1þ jDxj
l

� �
exp � jDxj

l

� �
cos q0jDxjð Þ; (2)

a sinusoidal oscillation that is damped by a modified exponen-

tial envelope function, where v2 is the mean-square deflection,

l is the correlation length, and q0 is the characteristic wave-

number. Derivation details are in Appendix C.2.45 Using

the measured values of v2 and the autocorrelations (Sec. II C),

Eq. (2) was fit using maximum likelihoods to obtain values of

q0 and l for each sample. Figure 5 shows the best fit damping

envelopes overlaying the experimental autocorrelations.

Simulated autocorrelations (Sec. III C) are also shown.

FIG. 4. Simulated deflection using method of amplitude functions corre-

sponding to sample S3. Black line shows deflection, vðxÞ. Gray envelope

shows plus and minus the absolute value of the spatially varying amplitude

(6jAðxÞj). The phase of AðxÞ can be inferred from the relation between the

black and gray lines.

FIG. 5. Deflection autocorrelations for samples S1, S2, and S3. Gray shows

uncertainty band for mean measured autocorrelation at approximately 95%

confidence (two standard deviations); dashed lines show the best-fit autocor-

relation envelope function (Eq. (2)); solid lines show the mean of 4000

simulated autocorrelations.
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B. Buckling FEM

Physical parameters and meaning for the longer-scale

stochastic model were provided by a shorter-scale determin-

istic FEM analysis of buckling. Inputs for the FEM analysis

from the longer scale included the characteristic wavenum-

ber, q0, and the measured mean-square deflection, v2 .

Additionally, the TEM-measured cross-sectional geometry

(Sec. II B) was needed. The FEM simulation related the com-

pressive TiN eigenstress, r, to the buckling amplitude, A,

and wavenumber, q, so that r ¼ rðA; qÞ. The stress function

is multiple valued for the stable state with zero buckling am-

plitude, A ¼ 0. The FEM analysis was used to determine the

ILD elastic modulus, EILD, the critical stress to buckle, r0,

and the sensitivities of the buckling stress to variations in the

deflection amplitude and buckling wavenumber, rAA and rqq,

up to an unknown stress-scale set by the TiN Young’s modu-

lus, ETiN. Published ETiN values measured by contact stiff-

ness16 determined the FEM output values in an absolute

sense. In this way, all parameters were determined using

only measurements of the as-processed samples.

Examples of the finite element buckling model and cross-

section geometries are shown in Fig. 6. The model was similar

to those used in Refs. 13, 15, and 16, but with more precise

ILD wall and mask geometries consistent with observed

cross-sections. Ref. 15 notes that simple rectangular geome-

tries can lead to erroneous predictions of buckling. Initial stud-

ies here found that simplified rectangular geometries and

simplifying assumptions about mask-ILD mechanical cou-

pling could introduce relative errors to extracted values as

large 100% when compared with the outputs of more precise

modelling. Initially, a stand-in value, ETiN ¼ 400 GPa, was

used to enable numerical model solution. For simplicity, typi-

cal Poisson’s ratios were used, � ¼ 0.2 for TiN and � ¼ 0.25

for ILD materials. First, a linear buckling analysis was per-

formed, and then a nonlinear finite buckling analysis.

The linear buckling FEM was used to solve for the criti-

cal buckling stress ratio, r0=ETiN, the ILD modulus ratio,

EILD=ETiN, and the stress sensitivity to wavenumber ratio,

rqq=ETiN. The linear model had two parameters that could be

varied, the ILD modulus, EILD=ETiN, and the model length,

k=2 ¼ p=q. Varying k=2 while holding the ILD modulus

constant allowed calculation of a buckling spectrum that

related the compressive stress at the onset of buckling to the

buckling wavenumber, q: SðqÞ ¼ limA!0þ rðA; qÞ (e.g., Fig.

7(a)). For each ILD modulus ratio, a buckling spectrum has a

different minimum Smin at qmin. The correct ratio was found

by choosing EILD=ETiN such that qmin ! q0 (more details in

Appendix D45). Next, the critical buckling stress ratio,

r0=ETiN, was found as Smin=ETiN.

FIG. 6. Cross-sectional TEM and FEM

images of deflection of sample S1. (a)

Cross-section TEM of ILD wall and

mask. (b) End of FEM of a simulated

cross-section. (c) Top view of FEM

showing k/2 modeled segment and

mirror image to create a single sinusoi-

dal oscillation. (d) Oblique view of

FEM showing assembly of k/2 seg-

ments into buckled periodic structures.

Coloring in (c) and (d) shows contours

of elastic strain energy where the low-

est energy indicated by blue occurs at

the most deflected points.

FIG. 7. FEM results for sample S1. (a) Simulated dimensionless buckling

spectra relating stress ratio, S/ETiN, to wavenumber, q. Boxed values indicate

the corresponding modulus ratio, EILD=ETiN, that gave rise to each spectrum.

Spectrum minima are indicated by circles. The blue minimum coincides

with characteristic wavenumber for sample S1 (gray dashed line). (b) Stress

ratio vs. amplitude from finite deformation buckling simulation of sample

S1 (blue symbols). Red line shows least-squares fit to obtain rAA=ETiN .
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Following the linear analysis, a nonlinear analysis was

performed to find the stress-amplitude sensitivity ratio,

rAA=ETiN. The model length was set to the characteristic

value, k=2 ¼ p=q0, and EILD=ETiN was set to the previously

determined value. The stress-ratio vs. deflection amplitude

has a parabolic shape (e.g., Fig. 7(b)). The parabolic shape

verified the hypothesis of weak nonlinearity that underpins

Eq. (1). Weak nonlinearity was further supported by the si-

nusoidal shape of the modeled buckling deflection (Fig.

6(c)). Fitting the stress-ratio vs. amplitude, the second stress-

sensitivity ratio, rAA=ETiN, was found. Using published ETiN

measurements16 (Table I), the resulting shorter-scale buck-

ling behavior could then be summarized as

r ¼ r0 þ
1

2
rqq q� q0ð Þ2 þ rAAA2: (3)

In the absence of random behavior, Eq. (3) would appear to

contain the whole picture. In fact, it would be overcomplete,

as variations in wavenumber q would not occur in homoge-

neous deterministic systems, and a simplified equation would

result, r! r0 þ rAAA2.

In a prior study of microscale out-of-plane buckling, it

was noted that large amplitudes affected the buckling wave-

length where the amplitude-to-wavelength ratio ranged from

0.03 to 0.15.21 In contrast, the nanoscale ILD wall deflec-

tions have amplitude to wavelength ratios that are less than

0.03, and the distinguishing feature is not wavelength sensi-

tivity to amplitude, but rather irregularity (pseudo-periodic-

ity) of the deflections arising from underlying stochastic

fluctuations.

On inspection, it might appear that the deterministic for-

mula, Eq. (3), could be applied to stochastic systems with ju-

dicious choices for A and q. A representative value for A
might be chosen, such as the root-mean-square deflection

amplitude, A ¼ ð2v2Þ1=2
, similar to the procedure in Ref. 16.

Therein, it was noted that stochastic effects probably

explained departures from the model predictions. In the ab-

sence of a developed stochastic non-linear model, it was not

possible to verify this hypothesis. Additionally, a wavenum-

ber, q, that is continued into the complex plane might be cho-

sen to take into account finite phase correlations so that

q! q0 þ il�1. The resulting pseudo-stochastic stress relation

would be r ¼ r0 þ 2rAAv2 � 1
2
rqql�2. Phenomenologically,

this equation has a lot to offer. In the absence of stochastic

effects, indicated by long range correlation, l!1, larger

deflections would indicate larger stress. Large stochastic

effects, indicated by small correlation effects, would simi-

larly allow buckling at stresses smaller than predicted from

deterministic models alone, even sub-critical buckling, i.e.,

buckling at less than the critical stress, r0. Unfortunately,

this approach has a number of shortcomings. First, simula-

tions (Sec. III C) indicate that the pseudo-stochastic formula

is quantitatively inaccurate. Second, simulations also indi-

cate that higher-order statistics, v4 ; play an important role.

Finally, without further simulation, it is impossible to vali-

date the model through detailed comparisons with observed

deflections. The pseudo-stochastic formula is not an alterna-

tive for performing longer-scale stochastic simulations.

C. Physical stochastic model

The final stage of the multiscale analysis was to imple-

ment the physical stochastic model. First, the physical signif-

icance and numerical values of the coefficients in Eq. (1)

were determined. Then, stochastic forcing was added to the

deflection model. Next, unknowns were found from statisti-

cal measures of the deflection pseudo-periodicity. Finally,

the solved unknowns were used to simulate deflection pro-

files and validate the reduced parameter description of ILD

trench-wall deflection.

The mathematical stochastic model is expressed by Eq.

(1). With an appropriate choice for the coefficients and forcing

term, FðxÞ, this model can be used to extend the findings of

the deterministic shorter-scale model to the longer-scale do-

main. This extension was performed by considering the case

of a force-free buckling deflection of wavenumber q and

ensuring that the predictions of the longer-scale model were

consistent with the shorter-scale findings. A perfectly coherent

deflection in the absence of force with wavenumber q and

constant amplitude A was considered, vðxÞ ¼ ReðAeiqxÞ, so

that AðxÞ ¼ Aeiðq�q0Þx. Inserting AðxÞ and FðxÞ ¼ 0 into

Eq. (1) and then factoring out AðxÞ results in Eq. (3), provided

that rAA and rqq have the same value in both equations and

that the characteristic square-amplitude in Eq. (1) is

A2
0 ¼ ðr� r0Þ=rAA . (It is equally valid to choose a common

proportionality constant for rAA, rqq, and A2
0, but for the pres-

ent purpose, it was most convenient to choose a proportional-

ity constant of one.) Note that A2
0 is negative for the

subcritical buckling case as it is the characteristic square-

amplitude, not the mean square-amplitude.

The next step was to determine the appropriate form of

the stochastic forcing. In trying to choose the simplest form

possible, qualitative comparison of simulation results with

measured deflections indicated that a sum of two noise terms

was needed: complex-valued additive white noise, gaðxÞ, and

real-valued multiplicative white noise, gmðxÞ, so that the sto-

chastic governing equation was

� r� r0ð Þ þ rAAjA xð Þj2 � 1

2
rqq@

2
x

� �
A xð Þ

¼ gm xð ÞA xð Þ þ ga xð Þ: (4)

Using only additive white noise, FðxÞ ¼ gaðxÞ, effectively

reproduced the phase decorrelation but produced only negli-

gible amplitude fluctuations. Using only multiplicative white

noise, FðxÞ ¼ gmðxÞAðxÞ, resulted in substantial amplitude

fluctuations but negligible phase decorrelation. Combining

additive and multiplicative white noise effectively repro-

duced both phase decorrelation and amplitude fluctuations

(Appendix C.4). While the specific physical causes of the

noise terms are beyond the scope of this work and are not

experimentally accessible, it is not difficult to see how such

noise terms might arise. For example, fluctuations in stress

level along the length of trench walls would give rise to real-

valued multiplicative noise, while asymmetric stress fluctua-

tions transverse to the trench walls would result in local

bending moments that could be represented as additive com-

plex noise. Additionally, it is expected that there would be
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fluctuations in geometry and material properties along with

their associated contributions to noise. Fig. 4 shows an

example realization of a solution to Eq. (4). Numerical

method details are given in Appendix C.3.45

As spatial variations in stress, geometry, and material

properties were not directly measured, the physical stochas-

tic model (Eq. (4)) initially had three unknown parameters,

the sought after TiN mask stress, r, and the amplitudes of

the two noise terms. These three values were found by

matching the statistical characterization of the solutions to

Eq. (4) with the statistical measures from the two earlier

stages: the mean square-deflection, v2 , the phase correlation

length, l, and the fourth moment of deflection, v4 .

Using dimensional analysis and numerical simulations,

it was possible to express the effects of the stochastic behav-

ior on the quantity of most interest, the TiN hard mask stress.

The TiN stress can be written as the naive stress-amplitude

relation discussed in Sec. III C with a stochastic correction

function, f ðrpd; rafÞ

r ¼ r0 þ 2rAA�2 f ðrpd; rafÞ; (5)

where rpd ¼ 1
4
rqql�2=rAA�2 is the dimensionless measure of

phase decorrelation and raf ¼ 2
3
�4=ð�2Þ2 is the dimensionless

measure of amplitude fluctuation (Appendix C.4 (Ref. 45)).

Contours of f ðrpd; rafÞ are shown in Fig. 8. In the absence of

random fluctuations, the correction factor reverts to the

deterministic case, f ð0; 1Þ ¼ 1. The noise amplitudes were

found similarly (Appendix C.4 (Ref. 45)).

Applying this method in turn to each of the investigated

samples, the dimensionless measures rpd and raf were calcu-

lated from the statistical measures and stress sensitivities.

The correction factors were found numerically from the cal-

culated values (Appendix C.4;45 Fig. 8). The TiN mask

stresses were calculated using Eq. (5). Finally, the fractional

adjustment due to the stochastic analysis was calculated by

comparing the final stress value with the value that would

have been obtained by assuming no stochastic correction

(f ðrpd; rafÞ ! 1). See Table II for a summary and Table C1

(Ref. 45) for a complete set of parameters. Sample S2 dem-

onstrates the important case of subcritical buckling: The sto-

chastic correction factor for S2 is f ðrpd; rafÞ ¼ �0:974, so

that the model-inferred TiN mask stress is 1.527 GPa, a value

less than the critical buckling stress of 1.632 GPa. This sub-

critical buckling indicates that point-to-point variations in

stress, properties, or geometry drove the ILD walls to buckle,

not an excess of average stress.

Once the hard mask stresses and stochastic forcing

amplitudes were determined, buckling deflection profiles

were simulated for comparison with the measured deflec-

tions. Individual ILD trench-wall buckling profiles were

used for qualitative comparison. Autocorrelations were

obtained from large ensembles of simulated deflections

(4000 simulations for each case) to give converged statistics.

Examples of simulated deflection images are shown in

Fig. 9. A more detailed comparison of individual deflections

alongside example measured deflections is shown in

Fig. 10.45

IV. DISCUSSION

The multiscale analysis and modeling depend on the

notion that the entire ensemble of buckled ILD trench walls

in each sample can be characterized by four meaningful sta-

tistical measures of the longer-scale random buckling

FIG. 8. Stochastic correction function calculated from dimensionless simu-

lations. The stress correction for each sample (S1, S2, and S3) can be read

from the contour plot using measured statistics of the phase decorrelation

(rpd) and amplitude fluctuation (raf ).

FIG. 9. Simulated ILD buckled wall images similar to sample S1. (a) Plan-

view image similar to an AFM image (scale-bar is 1 lm). Dashed box shows

reconstructed region in (b). (b) Three-dimensional image similar to an SEM

image from simulated deflections and finite element calculations (scale-bar

is 500 nm; Appendix C.5).
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(q0; l; v2 ; v4) and a clear understanding of the shorter-scale

buckling mechanics (characterized by r0, rAA, and rqq). The

success of this approach was tested in a number of ways:

First, qualitative visual aspects of simulated buckling were

compared with images and measured deflections. Second,

the statistics of simulated ensembles were compared with

those obtained from measurements. Finally, the values of

physical quantities extracted from the multiscale model were

compared with those from measurements where available.

Each of these aspects is now examined, followed by consid-

erations of the application of the current approach in ILD en-

gineering and to other systems.

A. Qualitative and statistical deflection comparisons

The simulated trench-wall deflections show a strong

qualitative resemblance to their measured counterparts.

Figure 9(a) shows an image of an ensemble of simulated

buckled walls (using sample S1 parameters) presented in a

format comparable to the AFM images of Figs. 1(c) and

1(d). Figure 9(b) shows an image of an enlarged section of

Fig. 9(a) presented in a format comparable to the scanning

electron microscope (SEM) image of Fig. 1(b). Although

rendering in both simulated images has been deliberately

selected to enable favorable comparison with the experimen-

tal images, it is clear that the simulation has captured the

look of the within- and between-wall buckling variability. A

more detailed assessment is shown in side-by-side compari-

sons for all three samples of measured and simulated

deflections in Fig. 10.45 The simulated deflections do an

excellent job of capturing the differences and commonalities

of buckling in each sample, and there are no glaringly omit-

ted characteristics despite the fact that the simulations repre-

sent random realizations corresponding to only four

measured parameters.

The study reported here corroborates the hypothesis of

subcritical buckling;16 however, no stochastic effect on

wavelength was found, nor is it clear why there should be

such an effect. Stochastic effects would appear first at the

wavelength of maximum compliance unless the driving

noise was severely colored. Rather, it would appear that

wavelength is difficult to predict for the as-processed materi-

als. As the present study includes detailed finite element

modeling and measurement of the as-processed samples, it is

concluded that the etching process affects material properties

that ultimately change the expected buckling wavelengths

(see Section IV B).

In even greater detail, the statistical deflection compari-

son of Fig. 5 shows that the longer-scale model does an

excellent job of capturing the long-range behavior. The ap-

proximate envelope function, Eq. (2), is an excellent fit

to the long-range decay of the measured autocorrelations.

The simulated autocorrelations showed even more aspects

of agreement than the initial four statistical measures.

Autocorrelations were calculated from ensembles of 4000

realizations corresponding to each sample and the average

response shown as the black solid lines in Fig. 5; the agree-

ment in both amplitude and phase with the experimental

FIG. 10. Measured and simulated

deflections. Measurements are deflec-

tions from samples S1, S2, and S3.

Simulated deflections use physical pa-

rameters extracted from nonlinear mul-

tiscale stochastic method. (Multimedia

view) [URL: http://dx.doi.org/10.1063/

1.4943615.1]45
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autocorrelation, shown as the grey bands, is clear. Thus, the

three parameter model, depending on v2 ; l, and q0, for the

autocorrelation is fully justified, gives a complete description

of both the experimental and simulated autocorrelations, and

serves as a valid link between measurable stochastic behav-

ior and physical understanding and materials parameter

determination.

B. Physical quantities

The etched ILD trench walls with hard-mask had under-

gone some various harsh processing procedures making it

difficult to compare the in-situ determination of physical

quantities here with other ex-situ measurements. However,

these comparisons can still be used to gauge the reasonable-

ness of inferred quantities and perhaps might provide insight

into how processing might affect materials properties and

state.

For samples S1 to S3, Eq. (5) gave compressive TiN

mask stresses that were greater than those indicated by wafer

curvature measurements prior to etching (Table III). Given

the thinness of the TiN masks and the documented effect that

ion bombardment has on TiN film stress,52 the observed

stress increase resulting from the plasma etch steps is not

surprising. Furthermore, the fractional effect of stochastic

analysis was to lower the stress estimated in every case. If

stochastic effects had been neglected (i.e., assuming f¼ 1),

the inferred stresses would have been erroneous and even

greater by 5%–15%. Different elastic moduli were found for

TiN on different ILD materials (Table I): about 230 GPa for

TiN on a-SiOC:H (sample S1) and about 155 GPa for TiN on

a-C:H (samples S2 and S3). The large difference in the elas-

tic moduli of TiN of these samples suggests a specific reac-

tivity of TiN to various substrates. It has been also shown

that mechanical properties of TiN are very sensitive to stress

and stoichiometry.53,54

In comparing the ILD Young’s moduli with mechanical

measurements of similar ILD blanket films, some difference

was expected between the measurements due to variation in

deposited ILD films, measurement error, and possible dam-

age of the ILD trench walls from the plasma etch, yet the

measured moduli turn out to be quite close (Table III). For

sample S1, EILD from the multiscale stochastic method com-

pared well with Brillouin light scattering measurements of

blanket a-SiOC:H.42 For samples S2 and S3, EILD was a little

greater than similar measurements on similar blanket ILD

films (a-C:H).42

C. Application in ILD engineering and extensibility
to other phenomena

The success of the stochastic multiscale analysis in char-

acterizing the observed buckling suggests that the analysis

and its associated models have a role in further ILD trench

engineering, and that the design of ILD trenches might need

to be approached differently. The prior deterministic

approach has been to keep mean design criteria such as stress

and aspect ratio at subcritical levels.13 This criterion has

zero-tolerance for buckling. However, as demonstrated by

the behavior and stress of sample S2, such a criterion is

untenable. There will always be some level of underlying

randomness; therefore, there will always be some amount of

subcritical buckling. For structures of larger dimensions,

subcritical instability may be so small as to be immeasurable,

but at the nanoscale this is not the case. Sample S2 would

pass all mean design criteria and still fail as a usable struc-

ture. Going forward, design criteria should probably be

expressed as a maximum tolerance for buckling, either as an

allowable mean-square deflection or perhaps a maximum

density of deflections greater than some threshold value.

Predictive design must estimate the degree of effective ran-

domness resulting from process and material variability.

Such an estimate would require further study of simulations

and post mortem failure analyses such as those presented

here.

In this work, a stochastic multiscale method was applied

to an instance in which it was not possible to measure or

fully understand the origins of stochastic behavior at the

length scales smaller than those experimentally measured.

However, the strength of the stochastic fluctuations was

measured indirectly through their effect on larger-scale

observations. As mentioned previously, the central limit the-

orem states that incorporation of random analyses will

become a more pressing need with the maturation of nano-

scale science and technology and the work here is an exam-

ple of such an analysis. While results such as those presented

in Fig. 8 may be applied directly to one-dimensional prob-

lems with the G-L form, Eq. (4), for other problems54 the

presented method can serve as heuristic guide. Other oppor-

tunities to apply stochastic methods in a similar manner have

already been mentioned.25–31 In cases where stochastic

TABLE III. Measured and extracted physical properties of buckled wall materials.

Sample S1 Sample S2 Sample S3

TiN stress from wafer curvature, r (GPa)a 1.4 1.0 1.0

TiN stress, inferred, r (GPa)b 2.68 1.520 1.978

Fractional stochastic stress correctionb (%) �5.8 �15.3 �9.0

ILD modulus from Brillouin light scattering, EILD (GPa) 5.7c 2.5d 2.5d

ILD modulus, inferred, EILD (GPa)b 4.85 4.54 4.71

aValues from wafer curvature prior to etching.16

bValues from present stochastic multiscale analysis (TABLE II).
cValue from blanket a-SiOC:H film similar to ILD of sample S1.39

dValue from blanket a-C:H film similar to ILD of samples S2 and S3.39
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effects have been homogenized away,35–39 incorporating

sensitivity factors and using the available a priori shorter-

scale fluctuations may provide greater insight and more pre-

cise and robust prediction of material behavior.

V. CONCLUSION

We have presented a nonlinear multiscale stochastic

method that was shown to effectively simulate nano-scale

buckled ILD trench walls with a stressed TiN hard mask

and to extract mechanical information from mechanical

stiffness measurements and geometric and morphological

information at both long and short length-scales. The multi-

scale approach allowed us to investigate how randomness

influenced measured structural behavior and inferences

about properties without direct knowledge of the underly-

ing sources of random behavior. Dimensionless measurable

quantities were defined that characterized observed longer-

scale random fluctuations using sensitivity parameters from

shorter-scale modeling. A deterministic model relating

stress to observed behavior was corrected to incorporate

the stochastic nature of the observed buckling. The model

was validated both qualitatively and quantitatively through

simulated statistics and deflections and agreement with ex-

perimental observations.

This approach demonstrates a tremendous advantage over

linear approaches, over single-scale stochastic approaches, and

over multi-scale models that attempt to homogenize shorter-

scale randomness. Linear approaches cannot simulate the

buckled state, so they are difficult to fully validate. Single-

scale stochastic approaches require microscopic understanding

of randomness that is impossible to obtain in most cases.

Approaches that homogenize away stochastic fluctuation will

frequently give results that are not comparable to observed

behavior and that ignore the impact that stochastic fluctuations

can have on quantitative inferences. The technique demon-

strated here is applicable to the development of nanoscale ILD

technology for microelectronic interconnects, and more

broadly for increasing the accuracy of measurements and mod-

els that are confounded by randomness that is inevitable at the

nanoscale.
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