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Abstract. The companion article proposed a model for radial crack development at sharp contacts.
The major extension of this model from previous works is the inclusion of a ‘wedging’ mechanism, to
form a three-stress-field description of indentation crack evolution. Here, the amplitude terms of the
three stress-intensity factors comprising the model are calibrated from experimental in situ and post
situ inert-environment radial crack measurements on soda-lime glass. These values are scaled to pre-
dict radial crack evolution during cube corner and Vickers indentation of fused silica and soda lime
glass in inert and ambient air environments. Both the conventional two-field and the proposed three-
field model predictions are compared with radial crack lengths measured during indentation load-
unload cycles (through the transparent materials with an in-situ apparatus). The three-field model is
shown to be a great improvement over the two-field model in the description of crack evolution at
cube-corner indentations, particularly with respect to the significant crack extension during loading
and the attainment of a maximum crack length during unloading. The three-field model is consis-
tent with observations of Vickers fracture in soda-lime glass and is able to reproduce the features of
radial fracture evolution on the ‘anomalous’ glass, fused silica.

Key words: Acute probe, crack propagation measurements, cube-corner indenter, fused silica, inden-
tation fracture, indentation wedging field, metastable trapped cracks, radial crack, soda-lime glass,
Vickers indenter.

1. Introduction

This article evaluates a model developed in the companion work, Part I (Morris and
Cook, 2005), for radial crack evolution at elastic-plastic contacts by sharp, acute,
rigid indenters. The model is compared with experimental observations of radial
crack development for cube-corner and Vickers indentation on soda-lime glass and
fused silica during the indentation load-unload cycle. The development of Part I
focused on the underlying physics and fracture mechanics of the three component
indentation field appropriate for acute probes and demonstrated the qualitative abil-
ity of the model to describe radial cracking. Here in Part II, emphasis is placed
on quantitative assessment of the model, considering both overall agreement between
predicted crack length as a function of position in the indentation cycle and specific
agreement with the point and relative crack dimension in the indentation unloading
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cycle at which cracks attain their maximum length. Particular attention is given to the
between-test scaling of calibrated amplitude terms for the three stress-intensity factor
components in terms of material properties and indenter acuity.

2. Experimental details

The data used to compare the radial crack evolution models is derived from ear-
lier work–specifically in-situ indentation experiments. Such experiments make use of
a custom indentation instrument that is capable of recording indentation loads and
probe displacements throughout the indentation cycle. This instrument, described
elsewhere (Morris and Cook, 2004), may also be mounted upon a metallurgical
microscope. With an optically transparent specimen, the development of the con-
tact impression and fracture pattern may be observed through the specimen through-
out the entire load-unload cycle. In-situ fracture data for cube-corner indentation
on soda-lime glass and fused silica are taken from earlier work (Morris and Cook,
2004), while Vickers fracture data on the same materials is unique to this article.

Indentation deformation behavior as a function of indenter acuity was examined
using 200 mN peak-load indentations on soda-lime glass generated with a NanoInd-
enter XP (MTS Corporation, Eden Prairie, Minnesota). Four three-sided diamond
pyramids, varying in acuity from the Berkovich to the cube-corner were used. A
complete description of these indenter geometries is given in previous work (Morris
et al., 2004). The residual impressions were sputter-coated with 50Å of platinum and
imaged in a JEOL 6500 field-emission gun scanning-electron microscope (JEOL-USA
Inc., Peabody, Massachusetts).

3. Comparison of the indentation wedging model with experiment

3.1. Stress-intensity factors

The main results and equations from Part I are summarized here for reference. The
residual stress intensity factor (SIF), KR, on radial cracks from a geometrically sim-
ilar indentation is

KR =χR P

c3/2
, (1)

where P is the indentation load and c is the radial crack length, defined as the pro-
jected length of the surface trace of the crack measured from the indentation cen-
ter. The magnitude of KR is fixed by the maximum load, Pmax, during the unloading
half-cycle due to the cessation of plastic deformation after peak load. χR is a semi-
empirical stress-field amplitude,

χR = ξR
(

E

H

)1/2

= ζ R (cot φ)2/3
(

E

H

)1/2

, (2)

where E is the material elastic modulus, H is the hardness, 2φ is the included angle
of the equivalent axisymmetric indenter, and ζ R is a material- and indenter-invariant
constant that together with φ defines ξR.
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The stress intensity factor due to the Boussinesq (normal pressure) stresses is the
elastic contact SIF, KE:

KE =χE P

c3/2
ln

(
2c

a

)
, (3)

where a is the characteristic contact dimension, defined as the projected distance
from the center to an impression corner. P and a are related by the hardness, P =
αa2H , where α is a dimensionless factor characterizing the indenter shape. a is fixed
at amax during unloading, again, due to the irreversibility of plastic deformation. χE

varies with material properties according to

χE =−ζ E (1−2ν) , (4)

where ν is material Poisson’s ratio and ζ E is positive semi-empirical constant.
The wedging SIF during loading takes the form

KW
load =χW P

c3/2
, (5)

with an amplitude χW of

χW = ζ Wα1/2

(
γ 2 −1

)
γ

(1−ν) , (6)

where γ is a dimensionless factor characterizing the response of the material to the
wedging action of the indenter,

γ =1+ (6−π)(1−2ν)

8(1−ν)
cot φ, (7)

and ζ W is another semi-empirical constant. During the unloading half-cycle, the
wedging SIF is

KW
unload =χW P

c3/2

(
P

Pmax

)(2− 3
m)

, (8)

where m is the unloading exponent (see Part I). The unloading wedging SIF retains
P/c3/2 scaling only if m=1.5.

The equilibrium condition K =T , where K is the sum of the three stress-intensity
factors and T is the material toughness, provides the basis for calculation of the
c(P ) crack length trajectories during the load-unload contact cycle. A convenient
dimensionless form for this condition uses K and T ; the total SIF and toughness,
respectively, normalized by the combined contact variable αHa

1/2
max. Dimensionless

indentation load and radial crack length are formed accordingly as P̄ =P
/
Pmax and

c̄= c/a, such that during loading

K̄load =
�P

c̄3/2

[
χR +χW +χE ln(2c̄/�P 1/2)

]= �T . (9)

During unloading, the dimensionless equilibrium relationship is

K̄unload = 1
c̄3/2

[
χR +χW �P (3−3/m) +χE �P ln(2c̄)

]= �T , (10)
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Table 1. Mechanical properties of soda-lime glass and fused silica used in crack-evolution modeling.

Parameter Soda-lime Reference Fused Reference
glass silica

Tinert (MPa m1/2) 0.70 (Wiederhorn et al., 1974) 0.73 (Wiederhorn, 1969)
Tenv (MPa m1/2) 0.25 (Cook and Liniger, 1993) 0.34 (Sglavo and Green, 2001)
E (GPa) 70 (Anstis et al., 1981) 72 (Wiederhorn, 1969)
H (GPa) 5.7 (Morris and Cook, 2004) 7.0 (Morris and Cook, 2004)
ν 0.25 (Anstis et al., 1981) 0.18 (Wiederhorn, 1969)
m 1.45 (Morris et al., 2004) 1.25 (Morris et al., 2004)

where a remains at the fixed, maximum value amax attained at peak load. Equations
(9) and (10) allow for straightforward numerical determination of c̄(�P) and thus c(P )

and identification of the interplay between the various SIF components as deter-
mined by their amplitude terms, χR, χW and χE.

3.2. Calibration of the model

Table 1 provides the mechanical properties of soda-lime glass and fused silica to be
used in calibration and scaling of the amplitude parameters in the radial cracking
model. We begin with the residual SIF term, χR, taking as our basis Vickers inden-
tation crack lengths measured post-indentation in a silicone oil environment (Anstis
et al., 1981). Under these conditions, the cracks are in inert equilibrium with the
residual field, such that the relationship between the crack length, c0, and the inert
toughness, Tinert, gives

χR =Tinert/(P/c
3/2
0 ). (11)

The measured load-invariant indentation crack length parameters were P/c
3/2
0 =

13.7 MPa m1/2 for soda-lime glass and 33.1 MPa m1/2 for fused silica. Using these
and the Tinert values from Table 1 in Equation (11) gives the χR values for
Vickers indentation, 0.051 and 0.022 for soda-lime glass and fused silica, respectively.
While the existence of the residual indentation stress field has been experimentally
well-established for soda-lime glass (Arora et al., 1979; Marshall and Lawn, 1979;
Cook and Pharr, 1990), there is much less residual stress in reaction to the deforma-
tion zone for a material that densifies substantially, such as the ‘anomalous’ glasses,
including fused silica (Arora et al., 1979). The much-reduced value of χR for fused
silica reflects this smaller residual stress field.

A χR value and known E, H and φ values for a given material-indenter combi-
nation in principal allow the calibration constant ζ R to be evaluated from Equation
(2) and thus χR to be estimated for other materials and other indenters. However, as
noted above, accommodation of the indenter displacement by densification in fused
silica significantly reduced the χR value (based on the E/H ratio and an invariant
deformation pattern, fused silica should in fact have only a slightly smaller χR value
than soda-lime glass). Similarly, a change in deformation mode with indenter acuity
prevents simple extrapolation in φ. Figure 1 is a series of SEM images of 200 mN
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Figure 1. Scanning-electron images of residual impressions of 200 mN indentations on soda-lime glass
by (a) Berkovich (φ =70.3◦), (b) φ =58.9◦ (c) φ =49.6◦ (d) cube-corner (φ =42.3◦). Plasticity is con-
tained at Berkovich and φ = 58.9◦ indentations, and uncontained at the φ = 49.6◦ and cube-corner
indentations.

peak-load indentations on soda-lime glass performed with sharp pyramids varying in
acuity from the Berkovich (φ =70.3◦) to the cube-corner (φ =42.3◦). There is a tran-
sition from fully-contained plasticity to unconstrained plasticity (‘pile-up’ of plasti-
cally deformed material around the indenter) somewhere between φ = 58.9◦ and φ =
49.6◦ for indentations on soda-lime glass. Pile-up reduces the constraint of the sur-
rounding elastic matrix on the plastic deformation zone, and necessarily reduces the
strength of the residual stress field, setting an upper limit on the value of χR that can
be achieved for a particular material (Lawn et al., 1980). Using the Vickers indenter
χR values above and the E and H values from Table 1 in Equation (2), the indenter
invariant ζ R parameters for soda-lime glass and fused silica are 0.0289 and 0.0136,
respectively. Using these to scale χR to the pile-up transition range via the angular
dependence of Equation (2) gives upper bound estimates of χR for the two materials
as 0.082 for soda-lime glass and 0.035 for fused silica. Figure 2 shows contours of
χR using Equation (2) and soda-lime glass as a basis, illustrating the dependence on
E/H and φ and the extrapolation of χR from the Vickers indentation measurement
to the unconstrained plasticity limit. Fused silica exhibits similar behavior with the
contours depressed by about 60% and the symbols shifted to slightly smaller E/H

values. χR values are listed in Table 2. In both materials, but particularly fused sil-
ica, the χR values appropriate to the cube-corner probe are substantially smaller than
χR =0.14 computed using ξR =0.040 (Pharr, 1998) as estimated from post-situ crack
length measurements.

The wedging and elastic-contact SIF terms, χW and χE can be calibrated from
in-situ fracture data, and we take as a basis cube-corner soda-lime glass fracture
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Figure 2. (a) Map of χR as a function of φ and E/H , calculated with Equation (2) for soda-lime
glass, calibrated via Vickers indentation (solid symbol). The value for cube-corner indentation was
extrapolated to the unconstrained plasticity limit (open symbol).

evolution measured in silicone oil (Morris and Cook, 2004) (recapitulated as
Figure 1(a) in Part I). The three-field crack evolution model shows that, during loading,
Equation (9), the effective crack-driving force amplitude is the sum

(
χR +χW

)
. There-

fore, the crack evolution data may be re-interpreted as following a trajectory of slope
χE

/(
χR +χW

) = −0.50 and intercept T
/(

χR +χW
) = 0.48 MPa m1/2. Together with

the inert-environment toughness (Table 1), the total crack-driving force amplitude is
χR + χW = 1.46, and the elastic-contact amplitude is χE = −0.73. Using χR = 0.08
(Table 2) appropriate to cube-corner indentation of soda-lime glass gives the wedg-
ing amplitude as χW = 1.38. The physics of acute indentation fracture is made clear
in comparison of the amplitude terms as they appear in Equations (9) and (10): crack
evolution is determined by the transient competition between the wedging and elas-
tic-contact fields, with the residual plastic deformation field a weak perturbation.

Scaling of the wedging term χW is dominated by the factor γ , which corrects the
indentation field for the transverse displacements omitted in determining the con-
tact stiffness of obtuse probes. Figure 3(a) is a contour map of γ as a function of
φ and ν using Equation (7); the locations of cube-corner and Vickers indentations
on soda-lime glass and fused silica are indicated (ν values from Table 1). The effects
of increased probe acuity (measured by cot φ) to increase γ and, to a lesser extent,
increased coupling of transverse and axial displacements (measured by ν) to decrease
γ are obvious. Expanding the scaling relation for χW, Equation (6), about the experi-
mental point for soda-lime glass cube-corner indentation using ζ W =3.44 and these γ

values gives the χW values for other materials and indenters. Figure 3(b) is a contour
plot of χW as a function of of φ and ν for three-sided pyramids, α = 33/2/4 ∼= 1.30.
The experimental calibration point is shown as the solid symbol and the extrapolated
points are shown as the open symbols. (The Vickers indenter points do not lie exactly
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Figure 3. (a) Map of γ as a function of φ and ν, calculated with Equation (7). (b) Map of χW

as a function of φ and ν, calculated with Equation (6) for cube-corner indentation, calibrated via
soda-lime glass measurements (solid symbol). The values for fused silica and Vickers indentation were
extrapolated via φ and ν as shown (open symbols).

on the contours indicated as α = 2 for four-sided pyramids. The arrows indicate the
approximate correct positions.) χW values are listed in Table 2.

The scaling of the elastic-contact term χE is straightforward from Equation (4);
the experimental point for soda-lime glass cube-corner indentation gives ζ E = 1.46
from which the linear extrapolation in ν to obtain the fused silica value is shown in
Figure 4. As observed in Equation (4), within the context of the three-field model
these values are indenter acuity invariant. Comparison may be made with previous
obtuse indenter observations, however, for which a good approximation is a two-field
description: the elastic + wedging components are combined into a single reversible
component with functional crack length dependence given by Equation (3) and a
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Table 2. Indentation parameters for fracture evolution modeling.

Material Indenter / Model α χR χW χE

Soda-lime glass Vickers / 2-field 2 0.051 0 −0.035
Vickers / 3-field 2 0.051 0.60 −0.73
Cube-corner / 2-field 1.3 0.082 0 −0.035
Cube-corner / 3-field 1.3 0.082 1.38 −0.73

Fused silica Vickers / 2-field 2 0.022 0 −0.045
Vickers / 3-field 2 0.022 0.76 −0.93
Cube-corner / 3-field 1.3 0.035 1.38 −0.93
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Figure 4. Plot of χE as a function of ν for three-field indentation model (lower line) and two-field
model (upper line), calibrated via soda-lime glass measurements (solid symbols). The values for fused
silica were extrapolated via ν (open symbols).

reduced amplitude term that reflects the competition between the underlying compo-
nents. Analysis in this way of radial crack growth at Vickers indentations in soda-
lime glass gives the reduced two-field calibration factor ζ E =0.07 (Lawn et al., 1980;
Morris and Cook, 2004). The experimental point and extrapolation for fused silica
value in this context are also shown in Figure 4. The physics of obtuse indenta-
tion fracture is made clear by comparison of this effective amplitude term with the
residual term: crack evolution is determined by the competition between an effective
reversible field and the irreversible residual field. χE values are listed in Table 2.

3.3. Crack evolution during the indentation cycle

Figure 5(a) is a plot of crack evolution in soda-lime glass, measured in situ dur-
ing cube-corner indentation in an inert environment (silicone oil). The two- and
three-field fracture predictions are shown as the dashed and solid lines, respectively,
using Equations (9) and (10), the peak loads indicated and the parameters listed in
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Figure 5. In-situ radial crack data for cube-corner indentation of soda-lime glass: (a) compared with
the three-field and two-field models in silicone oil; (b) compared with the three-field model in
ambient air.

Tables 1 and 2. While the three-field model does not reproduce the experimental data
exactly, the features of radial crack evolution for cube-corners are certainly captured:
Radial crack growth dominates the loading half-cycle, and there is little radial crack
growth on unloading. The two-field model underestimates the crack lengths through-
out the contact cycle and predicts an increasing crack length during unloading that
is not observed. Figure 5(b) is a similar series of plots of in-situ fracture data for
soda-lime glass in a reactive environment (ambient air). Appropriate to the fracture
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Figure 6. In-situ radial crack data for cube-corner indentation on fused silica: (a) compared with the
three-field model in silicone oil; (b) compared with the three-field model in ambient air.

environment, the toughness of the glass was set to the smaller value, Tenv, (Table 1)
in making the three-field crack evolution predictions. The three-field model describes
the radial crack-length evolution very well, except perhaps in the final stages of
unloading.

Three-field crack evolution model predictions are compared with in-situ radial
crack measurements for cube-corner indentation of fused silica in silicone oil and
ambient air in Figures 6(a) and (b), respectively (using appropriate material parame-
ters as per Tables 1 and 2). For both environments, the crack-length response is ade-
quately represented during the loading portion of the contact. However, the wedging
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Figure 7. In-situ radial crack data for Vickers indentation in ambient air compared with the three-field
and two-field models: (a) soda-lime glass; (b) fused silica.

model does not represent the crack-length response very well during unloading—in
each case, the model predictions are marked by a large peak in crack length near
complete unload that is not observed experimentally.

Figure 7 is a series of comparisons of crack evolution trajectories during Vickers
indentation of (a) soda-lime glass and (b) fused silica in silicone oil. Two- and three-
field fracture predictions are shown as the dashed and solid lines, respectively; for
both materials the indentation loads are much greater than those used during cube-
corner indentation. For soda-lime glass, the two-field model in this case does a much
better job of describing the observations, particularly the increase in crack length
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during unloading—a result that is not too surprising given that Vickers-soda-lime
glass observations such as these motivated the development of the two-field model
in the first place (Marshall and Lawn, 1979). The three-field model underestimates
the radial crack lengths by a great deal until almost complete unload. For fused sil-
ica, both predictions are inadequate except at the conclusion of the cycle, where the
(calibrated) residual SIF provides agreement with the crack lengths.

3.4. Metastable radial crack trapping

The previous section showed that the wedging crack evolution model is able to
describe crack evolution in both soda-lime glass and fused silica, if there is perhaps
some deficiency in the description of unloading in the final stages. In particular, the
net SIF and thus equilibrium crack length passes through a maximum during the
final stages of the unloading cycle (Figures 5–7 and Figure 14 in Part I). If cracks
cannot heal, then the crack length at full unload (observed after the contact event)
may be metastably trapped in a sub-equilibrium configuration. It is therefore desir-
able to find the maximum crack length in the unloading cycle. Equation (10) may
be differentiated with respect to �P , and solved for the load at maximum �K and
constant c̄:

�P (�T )∣∣
c̄
=

(
−χE ln (2c̄)

3χW

m

m−1

) m
2m−3

(12)

Equation (12) is an expression for the dimensionless indentation load at which an
equilibrium crack will reach a maximum. Furthermore, this expression predicts that
the existence of metastable trapping phenomena depends, from a material-probe
geometry point of view, only on the χW/χE ratio and the unloading
exponent m.

Substitution of Equation (12) back into Equation (10) forms the dimensionless
SIF level for metastably trapped cracks, �Kmeta:

�Kmeta =χR 1
c̄3/2

+	�K (13)

where 	�K is a dimensionless increment of metastable trapping, and is equal to

	�K = (χWB +χEBm/(3m−3))
[ln(2c̄)](3m−3)/(2m−3)

c̄3/2
(14)

with

B =
(

− χE

χW

m

(3m−3)

)(3m−3)/(2m−3)

. (15)

Inspection of Equations (14) and (15) shows that the result of the conventional
(residual-stress only) model is recovered as χW → 0 only for 1 <m< 1.5, and there-
fore these limits define the physically admissible range of m (within the model).
Figure 8 is a plot of �K vs. c̄ for cube-corner indentation on soda-lime glass (which
may be compared with Figure 13 in Part I) with the peak load �P = 1 line, the
unload �P =0 (equilibrium with the residual field only) line, and the maximum crack
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Figure 8. Metastable trapping in dimensionless coordinates, with the maximum crack length line of
Equation (13). The bold line is the full metastable cracking relationship, which connects the maxi-
mum crack length line (short-dash) at large c̄ to the �P =1 (solid) line for smaller c̄. At large c̄, the
maximum crack length line approaches the �P =0 (long-dash) residual-field-only line.

length line of Equation (13). The maximum crack length response coincides with the
�P = 1 response at c̄ = (

1
/

2
)

exp
[
3 (1−m)χW

/
mχE

]
, and asymptotically approaches

the �P =0 response at large c̄. The complete metastable response, shown as the bold
line, is formed by connecting the �P =1 line for crack lengths less than the coincident
point to the maximum crack length line.

Using Equation (12), the point of maximum crack length during the unload-
ing half-cycle may be mapped onto a plot of �P vs. c̄ as a function of the χW/χE

ratio with fixed m. Although – χW/χE is approximately invariant with material
properties (see Discussion), the point in the unloading cycle at which crack-length
maxima are reached is a strong function of m. Fused silica (m≈1.25) and soda-lime
glass (m ≈ 1.45) nearly span the range of experimentally observed m at sharp con-
tacts, (Oliver and Pharr, 1992; Pharr and Bolshakov, 2002, Morris et al., 2004) and
this allows for some possible experimental distinction between the two glasses.

Figure 9(a) is a map of maximum crack length-load loci in the unloading cycle
as a function of −χW/χE for m = 1.45, appropriate for soda-lime glass (Table 1).
Superimposed on the figure are estimates of �P at maximum c̄ from in-situ cube-cor-
ner indentation observations on soda-lime glass; the symbols represent the maximum
estimated crack length and associated load point and the load range for adjacent
observations. While the uncertainty in �P is significant, the data group about the
−χW/χE =2.0 line, consistent with −χW/χE as estimated from the loading half-cycle
(Figure (4) and Table 2). It is noted for Vickers indentation, with −χW/χE =0.7, the
maximum crack length is at complete unload over all practical range of c̄, in agree-
ment with experiment (e.g., Figure 7).

Figure 9(b) is a similar map of −χW/χE for m=1.25, appropriate to fused silica.
Immediately obvious is the decrease in sensitivity of the contours on c̄ compared
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Figure 9. Maps of the point in the unloading cycle at which crack length reaches a maximum for
(a) soda-lime glass and (b) fused silica. Superimposed on both maps are experimental observations
of crack length maxima for experiments in silicone oil and ambient air.

to the m= 1.45 case. Again, estimates of �P at maximum c̄ from in-situ cube-corner
indentation observations on fused silica are superimposed, estimated in the same way
as for soda-lime glass. The experimental data mainly lie in the band 2.0<−χW

/
χE <

2.5, and appear to follow the same trend as the lines of constant χW/χE. While the
model greatly overestimates the maximum crack length for fused silica in the later
stages of unloading (Figure 6), there appears to be some success in predicting the
point in the indentation cycle of maximum crack length.
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4. Discussion

4.1. Wedging phenomena and stress-field scaling

The experimental observations here suggest that a reversible, tensile, plastic-deformation
mechanism-insensitive stress field drives fracture during acute indentation. While the
evidence for this ‘wedging’ field is by no means exhaustive at this point, the in-situ
fracture experiments exhibiting very high driving forces during loading, failure of the
two-field crack evolution model and successful scaling of the wedging field by inden-
ter angle and material Poisson’s ratio, along with supporting observations of indenter
acuity-related fracture phenomena during instrumented indentation, are all compel-
ling evidence. Of course, reversible, elastic indentation stress fields causing fracture is
not new—the ring and cone cracking system common for Hertzian contacts is the
most well-known example (Frank and Lawn, 1967, Cook and Pharr, 1990).

An important assumption in developing the wedging field was representation of
the lateral contact displacements as a surface-located blister field, with the accom-
panying σ ∼ 1/r3 stress dependence. The experimental basis for this assumption is
the in-situ experiments that show an apparent SIF of type P

/
c3/2, which corresponds

to a σ ∼ 1/r3 field, and another of type P
/
c3/2 ln

(
2c

/
a
)
, corresponding to the σ ∼

1/r2 field attributed to the Boussinesq field (Lawn et al., 1980). It is possible that
this result is a consequence of presumptively choosing the forms of the stress fields
prior to plotting experimental data (that is, there was no attempt to characterize the
data as resulting from, say, σ ∼1/r or σ ∼1/r4 fields). However, as Yoffe has shown
(Yoffe, 1986), the stress field arising from an axisymmetric surface shear distribution
over a contact of radius a is equivalent to the blister field in the far field, r �a. In
retrospect, then, it is not surprising that imposed lateral displacements (presumably
resulting in significant shear) at a contact would manifest themselves as the blister-
field-like wedging phenomena explored in this work.

Another assumption used in constructing the form of the wedging field was that
axial and lateral displacements within the contact zone were independent. This assump-
tion is not a conservative one—displacements are certainly not independent—and
imposed lateral vs. axial displacements beneath the contacted surface are competing
effects for any ν > 0. It may be that one of the primary manifestations of lateral
displacement at the contact is a wide gap between the net resisting force amplitude
(χE +χW =−0.12) measured for cube-corner and the value (χE =−0.035) measured
for Vickers fracture on soda-lime glass (Figures 3 and 4). A possible reason for this dis-
crepancy is crack shape: Cube-corner radial cracks were noted to definitely intersect the
surface along their entire length (Morris and Cook, 2004), while Vickers radial cracks
are observed to exist largely subsurface during most of the indentation cycle, where
they are shielded from the highest compressive stresses of the Boussinesq field (Cook
and Pharr, 1990; Tandon et al., 1990). Another explanation is that the Boussinesq field
is not a good approximation at intermediate distances for the contact stress field of a
very acute indenter, in that the wedging and contact stress fields interact significantly
in this range. This is a subject for future theoretical and experimental study.

The relative importance of the wedging field for a given indenter may be assessed
by the ratio −χW

/
χE. Expanding this ratio using Equations 4, 6 and 7, using
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γ − 1 � 1 (see Figure 2(a), this is a good approximation for most indenter-material
combinations), gives −χW/χE ≈3ζWα1/2 cot φ/4ζE; a parameter invariant with respect
to material Poisson’s ratio and sensitive only to the probe acuity, φ, at least when φ

is large. With this observation, −χW
/
χE may be interpreted as a rough measure of

the ‘wedginess’—the relative flat-punch-to-needle-like behavior—of a particular probe
geometry.

4.2. Wedging fracture evolution model

If a wedging phenomenon is, in fact, an important or even dominant mechanism
for very acute probes, this complicates the interpretation of post-indentation fracture
results. Still, there are possible ways in which to exploit wedging phenomena. First
among them is the estimation of the fracture toughness of materials that have a great
deal of porosity, or free volume, where the elastic-plastic model would surely fail due
to accommodation of permanent deformation by compaction (Cook et al., 2004). We
consider here the practical implications of the wedging fracture evolution description
for post-indentation behavior and in the final stages of unloading.

For conventional materials evaluation, the greatest implication of the wedging
fracture evolution model is that, with the possibility of metastable crack trap-
ping, there will be deviation from the c ∼ P 2/3 scaling predicted for a residual-
field only radial-crack configuration. From the three published calibrations of ξR

for cube-corner indenters (Pharr et al., 1993; Harding et al., 1995; Pharr, 1998), it
appears that after the indentation event the c∼P 2/3 scaling is approximately obeyed.
Examination of Figure 8, however, shows that metastable trapping is most important
for the smallest indentation loads (greater �K), exactly where experimentation is most
difficult: The µm and sub-µm cracks produced at the very smallest (‘nano’-)indenta-
tion loads will be affected by surface forces on a length scale not normally important
for the macroscopic cracks produced by conventional (Vickers) indentation fracture,
especially if there is insufficient residual stress to hold the cracks open. Crack clo-
sure nearest the crack tip makes detection of the tip of the crack especially difficult in
imaging methods that are mostly sensitive to topography, such as secondary-electron
or scanning-probe microscopy. The purpose of this discussion is not to dismiss pre-
vious experimental results, but to acknowledge that there are still considerable exper-
imental difficulties when studying fracture at very small length scales.

Another phenomenon that may affect the perceived c vs. P relationship is post-
indentation radial crack pop-in. All of the preceding discussion has been predicated
on the existence of a stable radial crack, existing primarily outside of the contacted
area, throughout the entire indentation cycle. If crack initiation happens after the
indentation event, then the radial cracks will grow to a final length in the presence
of the residual field only. A full indentation fracture response for a material that
has a significant residual field and is susceptible to slow crack growth, such as soda-
lime glass and many other oxide ceramics, might be imagined thusly: no radial crack-
ing at the smallest loads; post-indentation radial fracture with attendant equilibrium
c∼P 2/3 scaling at larger loads; an abrupt jump in crack length as cracks are initiated
during the indentation cycle and are metastably trapped at still larger peak indenta-
tion loads; and then eventual recovery of c∼P 2/3 scaling at the greatest loads as the
Boussinesq-like stresses squelch the effects of wedging.
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A quantity of possible experimental interest is 	�K, the stress-intensity factor
difference between a radial crack at equilibrium size and at the maximum crack
length in the presence of the residual stress field. 	�K is therefore a measure of the
amount of metastable trapping of radial cracks after complete unload, a practical
quantity that would be required in estimating the stress level needed to repropagate
indentation flaws after their introduction onto a material surface, or, the reduction
in toughness (as, for example, when suddenly exposed to a corrosive environment)
needed to repropagate indentation flaws under the influence of the residual field only.
From a modeling point of view, the greatest deficiency in the wedging indentation
model is prediction of crack size during the unloading half-cycle, especially for the
later stages of unloading and low-m materials, such as fused silica. By Equation 10,
KW persists later in the unloading half-cycle than KE, and persistence is strength-
ened by smaller m, which gives rise to the great amount of crack growth in the last
half of the unloading half-cycle, Figure 6. So while quantification of 	�K is desir-
able for many reasons, including those above, the model in this article is likely to
overestimate 	�K. However, the in-situ fracture data show that cracks reach maxi-
mum size well before complete unload, indicating that the phenomenon of metasta-
ble trapping of radial cracks should be included in practical consideration of acute
contacts.

Finally, it has been demonstrated that the unloading of a sharp indenter from a residual
impression of an elastic-plastic indentation is analogous to the unloading of a ‘power-law’
indenter with a shape described by z = Fr

1
m−1 (Pharr and Bolshakov, 2002) (where F is

some constant). The implication is that the acuity of the indenter effectively decreases
with unloading, until at very small contact radii (relative to the residual impression) the
contact is well described by Hertzian mechanics. At this stage, the wedging stresses would
become very small compared to the Boussinesq-like stresses arising from normal pres-
sure. The consequence for this work is that our approximation of the unloading stress
(and fracture) fields is likely to be good in the initial stages of unloading, but expected to
break down during the final stages of unloading, exactly as observed in Figures 5 and 6.
Considering that the current unloading crack-length model accepts no further inputs, save
the independently-determined unloading exponent m, the agreement is satisfactory. This
points the way for further improvement of the indentation wedging model of Part I.

It was also noted that the only acceptable range for m (found by testing for recovery
of the residual-stress model, Equations 13–15, as χW →0) was for 1<m<1.5. This is
an interesting result. The Sneddon solution for axisymmetric indentation shows that
m=1 for a flat punch, m=2 for a geometrically similar (conical) punch, and m=1.5 for
indentation by a parabola of revolution; forming the generally accepted range for elas-
tic unloading at an elastic-plastic indentation, 1 ≤m≤ 2 (Pharr and Bolshakov, 2002).
Most published values for m are in the range 1.25–1.50 (Pharr and Bolshakov, 2002;
Morris et al., 2004), in the acceptable range of the wedging crack evolution model.
Recent finite-element work shows that there is a definite physical basis for m∼= 1.5—
a consequence of the smoothing of the pressure distribution under the contact as a
result of plastic deformation (leading to the equivalent power-law indenter described
above of form z=Fr2). However, the obvious problem with the wedging formulation
is the failure of KW

unload for a perfectly elastic indentation cycle for a sharp probe, when
m must equal 2. This is a consequence of choosing the inner boundary of the crack
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as amax when forming KW
unload. If the instantaneous contact boundary during unload-

ing, a′, (Equation 20, Part I) is substituted for amax as a lower limit when forming the
wedging SIF by integration, then KW

unload becomes

KW
unload =χW P

c3/2

(
P

Pmax

)(1− 2
m)

. (16)

Duplication of the development of Section 3.4 with Equation (16) shows that the resid-
ual-stress only model is recovered for 1 <m< 2 with the above expression for KW

unload.
As a practical matter, choosing amax as the inner crack boundary is physically justified
at least as well as choosing a′ for any material that exhibits irreversible deformation.
The KW

unload of Equation (16) may be a better SIF than Equation (8) for materials
that fully recover within the contact zone from sharp indentation, such as rubbers and
elastomers.

5. Summary

Crack growth measured during the loading half-cycle of cube-corner indentation on
soda-lime glass was used here to calibrate the amplitudes of the dominant and com-
peting wedging and elastic-contact crack-driving and -resisting forces in a three-field
fracture model. Crack lengths measured after complete unload of Vickers indenta-
tion on soda-lime glass were used to calibrate the small, perturbing residual stress
field amplitude; observations of indentations by probes of varying acuity indicated
an upper bound to this amplitude set by unconstrained plastic deformation at very
acute indentations. Elastic and plastic material properties were used to scale these
amplitude terms to values applicable to fused silica indentation and indenter effec-
tive included angle was used to scale the amplitude terms to values applicable to
Vickers indentation. Direct comparison of crack lengths measured in situ during
cube-corner indentation with scaled predictions of the three-field model for a range of
indentation loads revealed very good agreement during the loading half-cycle and initial
stages unloading for both soda-lime glass and fused silica. A characteristic of the obser-
vations and predictions is substantial crack growth on loading and very little growth
on unloading. A feature of the model, in fact, is that a metastably-trapped maximum
crack length is predicted at an intermediate stage of unloading. Measurement of the rel-
ative dimensions and position in the unloading half-cycle at which these maxima were
observed were in agreement with the loading-cycle based calibration of the wedging to
elastic contact field amplitude ratios (although absolute crack lengths were somewhat
over predicted). Whilst material and indentation-load scaling were relative successful,
indenter acuity scaling to from cube-corner to the relatively obtuse Vickers indenter
was less so; a previous two-field model predicted the observed crack extension during
unloading from relatively large load Vickers indentation on soda-lime glass, whereas
the three-field model significantly under-predicted crack extension throughout the cycle.
Both two- and three-field models were inadequate for Vickers indentation of fused sil-
ica, although, as for the cube-corner, the three-field model captured the observed crack
growth on loading and stagnation on unloading.

For most practical indenter geometries, the ratio of crack-driving to crack-resisting
amplitudes within the context of the model, χW/χE, is approximately independent
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of material properties for fixed indenter geometry, suggesting that there is a mate-
rial-independent measure of ‘wedginess’ for a particular probe that dictates crack
development during indentation. Quantitative predictions of crack development, both
throughout an indentation cycle and at specific points in the cycle, can be made to
test the validity of the model as a function of wedginess, as was performed here.
In particular, while existing evidence seems to support the wedging hypothesis, more
in-situ work should be performed to explore the scaling properties with probes of
varying acuity: increasing wedginess should drive greater crack growth earlier in
the contact cycle independent of material. Conversely, in-situ work with a probe of
fixed wedginess should exhibit invariant crack development as materials are varied,
although experimentally varying Poisson’s ratio or the modulus/hardness ratio over a
wide range is more difficult, especially with transparent, ideally brittle materials.
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