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Abstract. Extension of the indentation fracture toughness estimation method to very small length
scales often requires the use of an indenting punch much more acute than the oft-used Vickers probe.
Experimental results for very acute, sharp probes have motivated a new approach to the indenta-
tion fracture mechanics of radial crack development. An extension of the standard two-component
(residual elastic–plastic + elastic contact) stress-field model of radial fracture is proposed, based on the
concept that a sufficiently acute indenter can also act as a ‘wedge,’ prying open the surface-located
radial cracks. In this, the first of a two-part series, a three-component wedging indentation model is
constructed, and some general characteristics of the model are explored. In particular, the implica-
tions of the three-component stress field of the model for the description of radial crack develop-
ment during load-unload indentation cycles of acute probes are considered. Explicit predictions of
crack development are compared with the qualitative features of experimental observations, providing
a basis for the quantitative comparisons in Part II.

Key words: Acute indenter, contact stiffness, indentation fracture, indentation wedging field, nano-
indentation, radial crack, toughness.

1. Introduction

Extension of indentation toughness techniques to very small length scales (10 µm or
less) is desirable for investigation of fracture properties of thin films and small vol-
umes, but is problematic. Often it is observed that the indentation cracking thresh-
old is substantial – that is, the indentation load beneath which the material will not
crack is large. For silicate glasses, the indentation threshold for Vickers indentation
is approximately 10 N (Lawn and Evans, 1977). A consequence of the threshold is
that the length scales at which fracture can be studied by Vickers indentation are lim-
ited. However, cracking thresholds can be reduced dramatically, to as small as 1 mN
in glasses and ceramics by employing a much more acute indenter – the cube-corner
(Pharr et al., 1993). The increased damage-generating power of the cube-corner has
led others to investigate fracture properties of thin films (Venkatesh et al., 2000; Li
and Bhushan, 2001) and to utilize crack extension (or attenuation) as a method for
residual-stress mapping on surfaces (Kese and Rowcliffe, 2003).



238 D.J. Morris and R.F. Cook

The above studies of crack-generation using the cube corner suggest that its crack-
driving power is described by current theories of indentation fracture. However, more
sophisticated indentation experiments do not wholly support the current indentation
crack evolution theories, calling into question the results obtained from conventional
indentation fracture interpretations. The purpose of this and the companion article
(Morris et al., 2005, submitted) is to examine the tenets of the indentation fracture
analysis. This is done with a view to the consequences for toughness estimation meth-
ods that use probes significantly more acute than the oft-used Vickers indenter.

2. Indentation fracture background

Strain mismatch between the plastic deformation zone generated during sharp
indentation and the surrounding elastic matrix creates a reacting stress field sur-
rounding the deformation zone that remains after contact (Lawn et al., 1980; Chiang
et al., 1982). This residual elastic–plastic stress field is tensile on ‘radial’ planes
passing through the indentation axis perpendicular to the surface and decreases with
distance from the contact, giving rise to a stabilizing fracture field for cracks prop-
agating away from the plastic deformation zone. The residual stress-intensity factor
(SIF), KR, for a surface-located semi-circular flaw is (Lawn et al., 1980)

KR =χR Pmax

c3/2
, (1)

where Pmax is the peak indentation load and c is the crack surface trace length (as
measured from the center of the indentation impression). Originally developed for
half-penny cracks (Cook and Pharr, 1990), the SIF of Equation (1) also describes
radial cracks (Laugier, 1985). The amplitude of the residual SIF depends on both the
material Young’s modulus, E, and the hardness, H , defined as the mean supported
contact stress,

H = P

A
= P

αa2
, (2)

where A is the contact area, a is the distance from the center to an impression cor-
ner, and α relates a2 to the projected contact area. (For example, α =π for a conical
indenter, and α=2 for a four-sided pyramid). χR varies with the E/H ratio as (Lawn
et al., 1980; Anstis et al., 1981)

χR = ξR (E
/
H
)1/2 . (3)

ξR is a dimensionless parameter incorporating crack geometry and stress-field
angular variation. ξR varies with the (axisymmetric equivalent) indenter half angle,
φ, according to

ξR = ζ R (cot φ)2/3 (4)

The dominance of the residual elastic-plastic field on the final crack configuration
was, in part, established by monitoring radial crack evolution at Vickers indentations
on a transparent specimen during the indentation load-unload cycle (Marshall and
Lawn, 1979) (so-called ‘in situ’ indentation fracture experiments). A two part SIF
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model was presented, composed of KR and a SIF attributable to the elastic contact
of the indenting punch, KE (Marshall and Lawn, 1979; Lawn et al., 1980):

KE =χE P

c3/2
ln
(

2c

a

)
, (5)

where χE is a dimensionless SIF amplitude term. KE is reversible – it is a conse-
quence of the elastic contact stress field of the punch, and is therefore zero after
the contact event. For radial cracks, χE is negative due to the compressive hoop
stresses at the surface in the field of a punch (Johnson, 1999), and therefore radial
crack growth is restricted during unloading until the radial cracks reach a final
length in the presence of the residual field only. This was shown to be the case
for Vickers indentation on soda-lime glass (Lawn et al., 1980), and also for many
other transparent materials, but not all materials (Cook and Pharr, 1990). Although
the initiation and evolution of radial cracks is of interest from a standpoint of
fundamental understanding, the great majority of practical interest in using indenta-
tion fracture methods – to estimate material toughness, T – do not depend specifi-
cally on the manner in which radial cracks form during the indentation load–unload
cycle. It is only important that the final radial crack configuration is in mechani-
cal equilibrium with the residual field such that the condition KR =T may be used
to estimate T . In fact, published calibrations of the crack driving strength of the
cube-corner suggest that the elastic–plastic model scales appropriately: ξR approxi-
mately doubles from the Vickers (φ = 70.3◦) (ξR = 0.016, experiments in silicone oil,
ξR = 0.022, experiments in air) (Anstis et al., 1981; Cook, 1985) to the cube-corner
(φ =42.3◦, ξR =0.040, experiments in air) (Pharr, 1998), consistent with Equation (4).

Two suites of experimental results, however, suggest that reversible elastic effects
may have a greater effect than previously thought, if the acuity of the indenting
probe is great enough. The first suite of results is from in situ observations of cube-
corner indentation on soda-lime glass and fused silica (Morris and Cook, 2004).
Combination of the net SIF, Equations (1)+ (5), with the toughness leads to an equi-
librium fracture description of the indentation loading and unloading half-cycles as,
respectively,

P

c3/2
= T

χR
− χE

χR

P

c3/2
ln
(

2c

P 1/2
(αH)1/2

)
, (6)

Pmax

c3/2
= T

χR
− χE

χR

P

c3/2
ln
(

2c

P
1/2
max

(αH)1/2
)

. (7)

Fracture data (load and crack-length) plotted in the manner of Equations (6) and (7)
will lie on a straight line of slope −χE

/
χR and intercept T

/
χR if the model correctly

describes the physical circumstances. Figure 1a is a plot of cube-corner indentation
fracture data for both soda-lime glass and fused silica. On loading, the data for both
fused silica and soda-lime glass follow a line, shown in the figure, of slope −χE/χR =
0.50 and intercept T

/
χR = 0.48 MPa m1/2. During unloading, Figure 1b shows that

the fracture data are clearly not represented by the same trajectory as the loading
data. The same result, failure of the residual + elastic contact crack-evolution model,
was also observed for both materials in a reactive environment, laboratory air.
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Figure 1. Indentation fracture data from in situ observations of cube-corner driven radial fracture on
soda-lime glass and fused silica under silicone oil from (a) the loading half-cycle and (b) the unload-
ing half-cycle. A best-fit line is drawn in (a) corresponding to slope −χE/χR = 0.50 and intercept
T/χR =0.48 MPa m1/2. This line is reproduced in (b).

In all of the cube-corner in situ indentation observations, crack driving forces
appeared to be very large during loading – around a factor of ten too great to
be consistent with the elastic-plastic residual field scaling of Equation (4) (Morris
and Cook, 2004). Radial crack driving forces also appeared to be very small dur-
ing subsequent unloading, resulting in relatively little or no radial crack growth.
Furthermore, the apparent crack driving forces for both soda-lime glass and fused
silica were indistinguishable, a curious result that has been observed elsewhere
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(Pharr et al., 1993). It has long been recognized that the densification mode of deformation
in fused silica (as opposed to the largely volume-conserving shear plasticity in soda-lime
glass) significantly reduces the plastic strain that the matrix must accommodate (Arora
et al., 1979), essentially making use of Equation (1) useless for toughness estimation with
Vickers probes on fused silica (Anstis et al., 1981; Cook, 1985). It is not clear why the
greater acuity of the cube-corner indenter would negate this effect.

Another set of key experimental results is from instrumented indentation, (com-
monly known as ‘nanoindentation’) experiments. Indentation load-displacement
(P vs. h) behavior is a well established method for measuring elastic modulus and
hardness at length scales where imaging is impractical (Oliver and Pharr, 1992, 2004).
A recent study (Morris et al., 2004) investigated indentation on a variety of materials
(spanning a range of E/H ratios from 9 to 200) with four three-sided pyramidal dia-
mond probes, varying in acuity from the Berkovich to the cube-corner. The Berkovich
is simply the three-sided analogue to the four-sided Vickers probe, both having an
axisymmetric equivalent cone with included half angle (axis-to-face) of φ =70.3◦. The
fracture pattern (and consequent residual SIF) generated by the Berkovich and Vickers
probes were shown to be very similar (Dukino and Swain, 1992), and therefore Ber-
kovich behavior may reliably serve as a proxy for comparison to Vickers indentation,
and vice-versa. The intermediate probes are characterized by φ = 58.9◦ and φ = 49.6◦,
and the cube-corner as φ = 42.3◦. Two effects of radial fracture on P vs. h behavior
were studied. The first was that of “pop-in,” a sudden increase in displacement of the
indenting probe into the surface of the material with no further increase in load when
(presumably) a radial crack formed. Figure 2a is a set of three superposed P vs. h

traces of indentation of fused silica by an acute diamond indenter, φ = 49.6◦. Pop-in
is seen on two of the traces, and on a third it is not. While pop-in affects the entire
P vs. h response, the final plastic displacement, hf , is unaffected. Pop-in, however, was
not observed for all indentations that displayed radial fracture, and never observed for
the Berkovich probe.

The second effect of radial fracture on P vs. h behavior was a distortion of the
unloading (elastic recovery) response. Figure 2b plots the recovered (elastic) displace-
ment during the unloading half-cycle for each of the four probes on fused silica.
The least recovered displacement was for the most obtuse probe, the Berkovich. For
more acute probes, the effect of radial fracture on the unloading behavior became
greater. Indentations that did not exhibit radial fracture had unloading behavior that
was completely invariant with probe geometry. In fact, while pop-in was not always
observed for indentations that displayed radial fracture, distortion of the unloading
behavior from the obtuse-probe response always was. Furthermore, while radial frac-
ture was observed in micrographs at indentations by the φ = 58.9◦ probe, there was
no discernable distortion of the unloading behavior. No feature in the P vs. h behav-
ior has been observed for radial crack initiation at Vickers indentations (Cook and
Pharr, 1990).

From the instrumented indentation results, it might be surmised that there is an
effect from the acuity of the indenter itself that is driving radial fracture – and that
when there is fracture at the indentation site, the accompanying strain and thus dis-
placement relief of the fracture-driving stresses are transmitted to the mechanical
probe. This effect is apparently negligible for less acute probes. On unloading, the
extra displacements are ultimately recovered, leading to a distortion of the unloading
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Figure 2. (a) Superposed load-displacement behavior for three 500 mN peak load contacts for an acute
(φ = 49.6◦) diamond probe on fused silica. Two indentation cycles exhibit pop-in, one does not. (b)
Recovered displacement during unloading for probes of varying acuity (φ shown on figure) on fused
silica. (np: no pop-in observed, p: pop-in observed).

curve with respect to less acute indenters. In situ fracture observations imply that
there is a tensile, reversible stress field that is responsible for crack growth during
loading of the indenter. Together, these experiments suggest that an acute indenter
acts as an elastic ‘wedge’ at the material surface, driving radial fracture as the inden-
ter is pressed into the material surface.

In the work here, a model of wedging phenomena at sharp indentation con-
tacts is presented. The physical basis for the wedging stress field is modeled with
a view towards elucidation of scaling properties with changes in indenter geometry
and material properties. Indentation crack evolution in the extended three-field model
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(residual + elastic contact + wedging) is compared with that in the standard two-field
(residual + elastic contact) model, Equations (6) and (7). The predictions of the three-
field model are compared with experimental observations of in-situ fracture in Part II
(Morris et al., 2005, Submitted).

3. Wedging stress field

The classic result for the elastic contact stiffness, S, of an axisymmetric rigid punch
in contact with an isotropic half-space is (Sneddon, 1965; Pharr et al., 1992)

S = 2
π1/2

EA1/2, (8)

where E is the plane-strain elastic modulus, E =E
/(

1−ν2
)
, where ν is the Poisson’s

ratio of the material. It has been pointed out that the boundary conditions from
which Equation (8) is derived prescribe displacements in the shape of a cone normal
to the surface of the solid, but do not prescribe the lateral displacements, which
are therefore free to take whatever form the solution generates (Akiyama et al.,
1995; Hay et al., 1998). However, for any punch-material combination, unless either
φ =90◦ (flat punch) or ν = 0.5 (incompressible material), there are lateral displace-
ments within the contacted zone inwards toward the indentation axis. The relative
deviation within the contacted region of the material surface from the nominal shape
of the punch becomes larger as the acuity of the punch increases, or as Poisson’s ratio
decreases. It has been shown that Poisson’s ratio effects on the lateral displacement
field are quite large even for (bonded) flat punches, while having little effect on the
normal displacement field (Fabrikant, 1990).

For real, essentially rigid, sharp indentation, lateral displacements will be con-
strained such that the material conforms to the shape of the punch. The effect of the
constraint of lateral displacements within the contacted zone might be expected to
change the indentation stress field associated with Equation (8) commensurate with
the magnitude of the deviation from the Sneddon solution. The rigid, acute indenter
must push material out away from the axis of indentation as well as down, and it
might be imagined that this acts much like a ‘wedge,’ prying open surface-intersecting
cracks at the indentation. An approximate description of wedging phenomena
follows.

3.1. Indentation wedging strain and stress

One effect of lateral displacement constraint will be to increase the contact stiffness
over and above the prediction of Equation (8) for fixed contact area (due to the extra
work needed to conform the material to the punch surface). A correction, γ , for
Equation (8) was proposed (Hay et al., 1999):

S =γ
2

π1/2
EA1/2, (9)

where γ is greater than or equal to unity. γ is a small correction to the contact stiff-
ness for most materials when the probe is relatively flat, such as the Berkovich probe
most commonly used in instrumented indentation experiments. γ has been shown
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to be a significant correction as the indenting punch becomes more acute (Hay and
Pharr, 1998). The concept of ‘effective’ indenter geometry was introduced to relate γ

to the real (axisymmetric equivalent) indenter geometry,

γ = tan φeff

tan φ
, (10)

where φeff is the half-angle of an ‘effective’ indenter that corrects for lateral displace-
ment constraint. γ depends on both the half-angle of the indenter and the Poisson’s
ratio of the material under contact:

γ =1+ (1−2ν)

4(1−ν) tan φ

(
3−π

/
2
)
. (11)

γ is only unity when ν = 0.5 or φ = 90◦. φeff is less acute than φ, and in this con-
text γ can be viewed as a correction to the projected contact area. The larger con-
tact area of the effective indenter also means that a larger volume is displaced at a
particular contact depth, with the difference in volume between the real indenter and
the effective indenter approximating the volume of constrained radial displacements
within the contact zone (Hay et al., 1999). Figure 3 is a schematic diagram of the
material surface within the contact zone predicted by the Sneddon solution, the real
rigid indenter, and the effective indenter.

If it is assumed, as a first step, that the lateral displacements are sufficiently indepen-
dent of normal displacements, then an effective ‘lateral volume strain’ at the indentation
site may be constructed by normalizing the volume of lateral displacements by the total
volume displaced by the indenter. The volume, V , displaced by an axisymmetric cone
from its apex to the contact depth, hc, at a purely elastic contact is

V = π

3
h3

c tan2 φ. (12)

The lateral volume displaced, 	Vlat, is the difference in volume between the effective
cone and the assumed cone, from Equations (10) to (11). With this, the lateral vol-
ume strain is simply

	Vlat

V
=γ 2 −1. (13)

Figure 3. Schematic section-view of a sharp contact, with the real (rigid) indenter, the contact surface
predicted by the Sneddon elastic solution, and the geometry of the effective indenter that compensates
for the lateral displacement effect. The difference between the effective indenter and the rigid indenter
approximates the volume difference between the Sneddon contact profile and the rigid indenter.
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An expanding spherical cavity (or blister-field) approximation can be used to
describe the stress field associated with the action of the indenting probe in the sur-
rounding elastic matrix (Anstis et al., 1981; Chiang et al., 1982; Yoffe, 1982): Let the
lateral volume strain act as a localized nucleus of strain at the surface of the material.
The surface-located hemispherical blister field approximation of Yoffe (Yoffe, 1982),
Appendix A, can be used to relate the lateral volume strain to wedging stresses.
(See Figure 15 for the coordinate system used.) Equate the lateral displaced volume,
Equation (13) to the increase in volume over a hemisphere (of any radius) caused by
a blister stress field, Equation (A.4). Combination with the surface hoop stress acting
at the surface over a prospective radial crack plane, Equation (A.6), yields an approx-
imate expression for the wedging stresses acting at the surface over the prospective
crack plane:

σφ = 1
r3

[
3
π

(
γ 2 −1

)
(1−ν)E

]
V. (14)

3.2. Correction for irreversible deformation

The previous section assumed that all deformation was elastic. Sharp indentation on
real materials is most frequently a combination of elastic and plastic (irreversible)
deformation, so it is important to estimate the proportion of total indentation vol-
ume displaced attributable to elastic deformation only. In particular, it is important
to relate the scaling of displaced elastic volume to material properties such as the
elastic modulus and hardness to properly scale any indentation fracture model for
material properties.

Figure 4 shows a schematic cross-sectional shape of an indentation at peak load,
and the recovery it undergoes as the indenter is removed. Under load, the total dis-
placement of the indenter apex into the surface is the sum of the contact depth, hc,
and the surface displacement, hs,

hs = ε
P

S
, (15)

where ε is assumed to be constant and approximately equal to 0.75 (Oliver and
Pharr, 1992; Pharr and Bolshakov, 2002). On unloading, the apex of the indentation
impression recovers to a final depth hf . It is assumed that there is no lateral recovery
of the indentation at the surface, and that both loaded and unloaded surfaces within
the contact zone are linear. This assumption will almost certainly lead to an under-
estimation of the volume accommodated by reversible deformation. Scanning probe
images show significant lateral recovery within the contacted zone for fused silica
(Oliver and Pharr, 2004). Perhaps more surprisingly, significant lateral recovery within
the contacted zone was detected by scanning-probe techniques for a very soft mate-
rial (aluminum) with virtually no apical elastic recovery (Lim and Chaudhri, 1999).
(Lim and Chaudri’s images also showed that there was little lateral recovery at the
surface.)

If unloading from peak load is described by a power-law function of the form
(Oliver and Pharr, 1992)

P =F(h−hf )
m, (16)
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Figure 4. Volume displaced at an elastic-plastic contact. (a) Section view of a loaded material sur-
face, with the contact displacement, hc, and surface displacement, hs. (b) Residual displacement, hf ,
for the fully unloaded contact. At complete unload, only the displaced plastic volume is remaining.
(c) Difference between the elastic–plastic (a) and plastic (b) volumes, where the frame of reference
has shifted to the contact perimeter such that the elastic surface displacement is ignored. The cross-
section of the elastic displaced volume, Velastic, is shown as the hatched area.

then the elastic volume, Velastic (Figure 4c) may be estimated from Figure 4 with an
analysis summarized in Appendix B (Wolf and Paufler, 1999):

Velastic = α cot φedgea
3

3

[
π1/2α1/2

2 cot φedge

(
H

γE

)
(m− ε)

]
, (17)

Velastic is the product of the total displaced volume of the indenter, α cot φedgea
3
/

3
for a pyramidal probe, and an attenuating term (in brackets) that is a function of
elastic, plastic, and indenter properties. On loading, a is related to the indentation
load P through the hardness relationship, Equation (2), and Equation (17) may be
rewritten as

Velastic
(
loading

)= P 3/2

α1/2H 3/2

[
π1/2α1/2

6

(
H

γE

)
(m− ε)

]
. (18)

Equation (18) is valid up to peak load, Pmax, where a is fixed at amax.
Description of the manner in which the wedging field varies on unloading begins

with a description of how displaced elastic volume varies on unloading. First, it is
assumed that the proportion of total to elastic displaced volume remains constant
during unloading, such that

h′
c −h′

f

h′
c

= hc −hf

hc

∣∣∣
∣
Pmax

, (19)
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Figure 5. Volume of indentation on unloading. The fraction of indentation volume occupied by irre-
versible deformation is assumed to remain constant during the unloading half-cycle.

where h′
c and h′

f are defined within the frame of reference of the instantaneous con-
tact boundary, Figure 5.

If there is only elastic recovery on unloading of the indenter, the instantaneous
contact area self-adjusts to conform to the elastic stiffness relationship of Equation
(9). Formation of S = dP

/
dh by Equation (16) and combination with Equation (9)

leads to the instantaneous contact dimension during unloading, a′ =h′
c tan φedge:

a′ = π1/2mF( 1
m)P (1− 1

m)

2γEα1/2
. (20)

At peak load, Pmax, a′ = amax, and comparison of Equation (20) with Equation (2)
shows that a′ varies during the unloading cycle with P as

a′ = P
( 1

m
− 1

2)
max P(1− 1

m)

(Hα)1/2 (21)

Substitution of Equation (21) into Equation (17) shows that the displaced elastic vol-
ume on unloading varies with load as

Velastic
(
unloading

)= P
3
m

(m−1)P
3

2m
(2−m)

max

α1/2H 3/2

[
π1/2α1/2

6

(
H

γE

)
(m− ε)

]
, (22)

Velastic varies in the same manner on unloading as on loading (Velastic ∼P 3/2, Equation
(18)) only if m=2. If m=1.5, then Velastic varies linearly with load on unloading. Sub-
stitution of Equations (18) or (22) for V in Equation (14) gives the variation of the
wedging stress field throughout the contact cycle.

4. Complete indentation fracture model

4.1. Stress-intensity factors during the load–unload cycle

In the indentation fracture evolution model proposed in this work, there are three
operative stress fields: the residual elastic–plastic stress field, the elastic contact stress
field, and the wedging stress field. Each stress-field, and corresponding SIF, varies in
different ways on loading and unloading. The various SIFs are now listed separately.
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As in Section 2, the residual elastic-plastic SIF, KR, during the loading portion of
the indentation cycle is

KR
load =χR P

c3/2
, (23)

where χR is a semi-empirical stress-field amplitude,

χR = ξR
(

E

H

)1/2

= ζ R (cot φ)2/3
(

E

H

)1/2

. (24)

During unloading, the plastic deformation zone is fixed and considered irreversible,
and therefore the residual SIF is

KR
unload =χR Pmax

c3/2
. (25)

The second component of the fracture field is the elastic contact field. From Section 2,
the elastic contact SIF during loading, KE

load, is:

KE
load =χE P

c3/2
ln
(

2c

a

)
=χE P

c3/2
ln

(

2c
(αH)1/2

P 1/2

)

. (26)

This is identical to the elastic contact SIF derived by Lawn et al. (1980) for radial
fracture, excepting that the logarithmic term was there considered approximately con-
stant, and was incorporated into χE. On unloading, the inner crack boundary is fixed
at amax, and KE

unload is

KE
unload =χE P

c3/2
ln

(

2c
(αH)1/2

P
1/2
max

)

. (27)

Equations (26) and (27) were created by substitution of the characteristic σ ∼ 1
/
r2

stress of the Boussinesq field, Appendix A, (while ignoring angular variations in the
stress) into the weighting function for an embedded circular crack (Lawn, 1993);

K = 2

π1/2
1

c1/2

c∫

0

rσ (r)
(
c2 − r2

)1/2 dr (28)

Completion of the integral of Equation (28) by substitution of the surface hoop
stress of the Boussinesq field, Equation (A.2) (with limits a · · · c and c2 >>a2) shows
that χE is related to material elastic properties through

χE =−ζ E (1−2ν) , (29)

where ζ E is a positive combination constant that accounts for crack geometry, angu-
lar stress-field variations and free-surface effects.

The wedging SIF on loading, KW
load is created by substitution of the elastic displaced

volume, Equation (18), into the surface hoop stress expression of Equation (14) and
completing the integral of Equation (28) (again, with limits a · · · c and c2 >>a2):

KW
load =χW P

c3/2
. (30)
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Here, χW performs the same function as in Equation (1): a dimensionless constant
coupling material and indenter parameters to the amplitude of the stress field. χW is
meant to encompass compensations for angular stress variations that were ignored
in creating Equation (30), free-surface effects, and any other approximations that
may have unwittingly been made. Analogous to Equation (29), ζ W is the material-
and geometry-independent experimental constant for the indentation wedging stress
amplitude:

χW = ζ Wα1/2

(
γ 2 −1

)

γ
(1−ν) , (31)

(A term equal to (m− ε) has been incorporated into ζ W for simplicity, as it is
a weakly varying term with weakly established dependence on fundamental mate-
rial properties, although the relationship between m and ε has been discussed at
some length (Pharr and Bolshakov, 2002).) The material dependency for χW is
only through Poisson’s ratio – a stark contrast to the

(
E
/
H
)1/2 scaling of the

elastic–plastic driving force that is normally considered a predominant characteris-
tic of indentation fracture. On unloading, a is fixed at amax, and with the unloading
elastic volume expression, Equation (22), the unloading wedging SIF is created anal-
ogously to Equation (30),

KW
unload =χW P

c3/2

(
P

Pmax

)(2− 3
m)

. (32)

The wedging SIF retains the familiar P/c3/2 character on unloading only if m=1.5.

4.2. Total indentation fracture response

During the loading portion of the indentation cycle, the residual elastic-plastic, wedg-
ing, and elastic contact SIFs may be combined to form the total SIF, KT

load:

KT
load =χR P

c3/2
+χW P

c3/2
+χE P

c3/2
ln
(

2c

P 1/2
(αH)1/2

)
. (33)

The scaling influence of the elastic–plastic and wedging stress-intensity factors is
indistinguishable. Therefore, there is effectively a two-component fracture field during
loading, with an ‘effective’ crack-driving amplitude,

(
χR +χW

)
. During unloading,

the amplitude of the elastic–plastic mismatch field is fixed at Pmax, and the total SIF,
KT

unload, is

KT
unload =χR Pmax

c3/2
+χW P

c3/2

(
P

Pmax

)(2− 3
m)

+χE P

c3/2
ln

(
2c

P
1/2
max

(αH)1/2
)

. (34)

The geometrical similarity of indentation fracture at sharp contacts means that
Equations (33) and (34) may be normalized by an appropriate combined contact var-
iable. Normalization is a convenient way of compactly mapping a large range of
indentation fracture behavior. If hardness is assumed to be constant, as is generally
true for geometrically-similar indentations if the scale of the contact is much larger
than any material deformation length scale, then hardness is a characteristic stress
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in the problem. Analogously, the characteristic length scale in geometrically similar
indentation is a. Therefore, the unloading and loading fracture responses of Equa-
tions (33) and (34) can be normalized by a contact parameter,

αHa1/2
max, (35)

where amax = (
Pmax

/
αH

)1/2
(Equation (2) defines a constant, reference length scale

over the entire indentation load–unload cycle). Dimensionless indentation load and
crack length are defined as, respectively,

P = P

Pmax
,

c= c

amax
.

(36)

Dividing Equation (33) by (35), substituting (36) and the equilibrium condition
KT

load =T yields the dimensionless equilibrium fracture relationship on loading,

K load =χR P

c3/2 +χW P

c3/2 +χE P

c3/2 ln
(

2c

P
1/2

)
= T

αHa
1/2
max

=T . (37)

The dimensionless fracture relationship on unloading is created analogously to Equa-
tion (37) with KT

unload (Equation (34)),

Kunload =χR 1

c3/2 +χW P
3
m

(m−1)

c3/2 +χE P

c3/2 ln (2c)=T . (38)

5. Comparison of indentation fracture evolution models

In this section, the radial crack evolution mechanics of the three-field fracture model
(residual, elastic contact, and wedging) is compared with the conventional two-field
(residual and elastic contact) model. Equations (37) and (38) allow for inspection of
the crack evolution models in a material-invariant way (if the SIF amplitudes, χ , may
be separated temporarily from material dependence). Figure 6 is a schematic plot of
K vs. c. During the loading half-cycle, the fracture system moves down the P =1 line
to K (amax). On unloading, K is fixed, and the fracture system moves directly to the
right on a line of constant K, and ends at the P =0 line. By Equation (38), the P =0
line has a slope of −3/2 in these coordinates, and is translated up or down depend-
ing on the magnitude of χR. The c=1 line is shown. This is a minimum crack length
condition stating that the radial cracks must extend out of the contact zone. The
present analysis says nothing about the initiation of radial cracks out of the defor-
mation zone, only that if there is sufficient driving force on a crack nucleus within
the deformation zone to initiate a radial crack, then that crack can propagate to a
stable length of c.

For comparison purposes, fracture evolution will be modeled for soda-lime glass
under contact from the two most common probes used for fracture evaluation,
the Vickers indenter and the cube-corner. Table 1 shows the parameters for used
for modeling – α,χR, χE, χW, and the unloading power-law exponent m, for both
the two- and three-field crack evolution models. The values of T = 0.7 MPa m1/2,
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Figure 6. Example plot of log(K) vs. log(c) using the dimensionless fracture description of Equations
(37) and (38). The fracture system follows the P =1 trajectory during loading, and then traverses a
line of constant K on unloading through lines of constant P (thin dashed lines) until P =0 is reached
at full unload.

Table 1. Parameters for soda-lime glass indentation fracture evolution.

Indenter/Model α χR χE χW m

Vickers/2-field 2 0.051 −0.035 0 n/a
Vickers/3-field 2 0.051 −0.73 0.60 1.45
Cube-corner/2-field 1.3 0.082 −0.035 0 n/a
Cube-corner/3-field 1.3 0.082 −0.73 1.38 1.45

H =5.7 GPa were common to all models. The origin and magnitude of these param-
eters are discussed in Part II of this series.

5.1. Two-field crack evolution model

Figure 7 is a plot of K vs. c for the two-field crack evolution model for soda-lime
glass under Vickers indentation. Figure 7 maps quite a large range of indentation
fracture behavior – a change of a factor of ten of K corresponds to a factor of
10,000 change in peak indentation load, assuming constant hardness throughout the
entire span of indentation loads. A line of constant K has been drawn, correspond-
ing to Pmax =25 N, a reasonable indentation load for toughness evaluation. Figure 8
is a pair of plots that chart the evolution of the crack length and individual stress-
intensity factors for the fracture system corresponding to the Pmax =25 N line drawn
in Figure 7. The two stress-intensity factors are constrained such that equilibrium
is maintained through the entire indentation cycle, and always sum to a normalized
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Figure 7. Dimensionless stress-intensity factor K as a function of c for Vickers indentation on soda-
lime glass, calculated using the two-field model and parameters listed in Table 1. A line of constant
K is shown corresponding to Pmax =25 N.

SIF (not to be confused with the dimensionless SIFs of Equations. (37) and (38)) of
K
/
T =1, shown as a dashed line. At complete unload, the only SIF remaining is KR.
Figure 9 is a plot of K vs. c for the two-field crack evolution model for the

cube-corner indenter. The only parameter that changes from the Vickers to the
cube-corner is χR and the most significant behavioral difference between the Vick-
ers and cube-corner is the position of the P = 0 line, indicative of the greater volume
displaced by the cube-corner. The displacements of the line P =1 and P =0 lines show
that radial cracks on loading are permissible at much smaller indentation loads than for
the Vickers, consistent with experimental results that show radial cracking on loading
for the cube-corner for soda-lime glass, but only on unloading for the Vickers (Morris
et al., 2004). Here a Pmax =10 N for cube-corner indentation gives rise to a larger value
than that that at Pmax = 25 N for the Vickers. (Of course, this work is not concerned
with the mechanics of crack initiation, but it stands to reason that greater driving forces
for stable fracture correspond with greater driving forces for crack initiation.)

Figure 10a charts the evolution of the stress-intensity factors throughout the load-
unload cycle for the Pmax =10 N system of Figure 9, and Figure 10b shows the simul-
taneous evolution of the radial cracks. There is little qualitative difference between
the 25 N Vickers (Figure 8b) and 10 N cube-corner crack evolution trajectories
(Figure 10b).

5.2. Three-field crack evolution model

Experimental measurements of crack-driving and resisting forces in the context of a
three-field model indicate that the magnitudes of χE and χW are very large compared
to χR, and the values used for demonstration of the three-field model are reflec-
tive of those results. Figure 11 is a plot of K vs. c for the three-field crack evolu-
tion model for the Vickers indenter on soda-lime glass. Comparison with the Vickers
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Figure 8. (a) Normalized stress-intensity factor (R – residual, E – elastic contact) evolution through-
out the indentation load–unload cycle, corresponding to the Pmax =25 N path shown in Figure 7. At
complete unload, KR = T . (b) Radial crack evolution throughout the indentation load–unload cycle
corresponding to the Pmax =25 N path shown in Figure 7.

Figure 9. Dimensionless stress-intensity factor K as a function of c for cube-corner indentation on
soda-lime glass, calculated using the two-field model and parameters listed in Table 1. A line of con-
stant K is drawn corresponding to Pmax =10 N is shown.
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Figure 10. (a) Normalized stress-intensity factor (R – residual, E – elastic contact) evolution through-
out the indentation load–unload cycle, corresponding to the Pmax =10 N path shown in Figure 9. At
complete unload, KR = T . (b) Radial crack evolution throughout the indentation load-unload cycle
corresponding to the Pmax =10 N path shown in Figure 9.

two-field model (Figure 7) shows that the P = 0 line remains invariant, as the only
SIF remaining at complete unload is the residual SIF, unchanged in the comparison
of the two models. However, the large, competing, wedging and elastic-contact SIFs
delay the great majority of crack growth until much later in the unloading half-cycle,
as illustrated in the evolution plots of Figure 12. The difference between the two- and
three field models at peak load is small, and the final crack configurations are the
same. While the absolute strengths of these fields are both very large compared to the
residual field, the competition between the wedging and elastic-contact fields largely
cancels them and allows the residual field to dominate the later stages of unloading
behavior and the final crack configuration at P =0.

Figure 13a is a plot of K vs. c for the three-field crack evolution model for the
cube-corner indenter on soda-lime glass. During unloading, the K vs. c relation is
quite complicated, and Figure 13b is a close-up of the region in the dashed box.
Figure 13b shows that on unloading from peak load, the cracks initially continue to
grow. However, at some point after P = 0.2, the (equilibrium) cracks would reverse
direction and retract to the P =0 line.



Radial fracture during indentation by acute probes 255

Figure 11. Dimensionless stress-intensity factor K as a function of c for Vickers indentation on soda-
lime glass, calculated using the three-field model and parameters listed in Table 1. A line of constant
K is drawn corresponding to Pmax =25 N is shown.

Figure 14 plots the evolution of the individual SIFs and the radial crack length
throughout the entire indentation cycle for cube-corner indentation, and demon-
strates the major differences between the two-field and three-field crack evolution
models. While there was little qualitative difference in the way the two-field model
predicted crack evolution for the Vickers and cube-corner, the three-field model
shows that a strong wedging field can disrupt normal monotonic radial crack exten-
sion during unloading. In fact, the three-field model predicts that the cracks will be
much longer at peak load (slightly longer, in fact, than at complete unload for the
two-field model) and that there is a maximum in crack length well within the unload-
ing half-cycle. The cracks in the cube-corner indentation should contract in the final
stages of unloading whereas those at the Vickers should extend.

6. Summary and conclusions

The two field (plastic + elastic contact) indentation fracture mechanics model, well-
established for radial cracking by (rather obtuse) Vickers indenters, was found to be
an inadequate description of cracking by acute indenters, typified by the cube cor-
ner. The experimental observations included: a lack of crack extension on unload-
ing, leading to a lack of reversible fracture evolution in the appropriate (two-field)
indentation fracture mechanics coordinates; a lack of dependence on the mode of
plastic deformation (densification or shear) on the fracture evolution, shown to be
dominant in obtuse indentation; and, the development during loading of extremely
large crack driving forces that reversed on unloading, in contrast to the much smaller
magnitude and irreversible crack driving forces associated with the dominant residual
(plastic) field of obtuse indentation. The nature of the new, reversible, dominating,
crack-driving force associated with acute indentation was elucidated by instrumen-
ted indentation measurements of load-displacement responses: an increased loading
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Figure 12. (a) Normalized stress-intensity factor (R – residual, E – elastic contact, W – wedging) evo-
lution throughout the indentation load–unload cycle, corresponding to the Pmax =25 N path shown in
Figure 11. At complete unload, KR =T . (b) Radial crack evolution throughout the indentation load–
unload cycle corresponding to the Pmax =25 N path shown in Figure 11.

compliance was observed during acute indentation, sometimes appearing as a ‘pop-
in’ event, that was associated with the appearance of cracks; the extra deformation
associated with the increased compliance was completely recovered on unloading.
Taken together, the observations suggested that an indenter of sufficient acuity acts
as a reversible wedge during the load–unload indentation cycle, providing a large
crack driving force as the wedge presses into the material surface that is indepen-
dent of, and dominates over, the residual field associated with plastic deformation,
and which provides increased contact compliance as the wedge penetrates into the
cracked indentation site.

The stress field associated with the wedging phenomenon was developed through
perturbation of the indentation contact stiffness by elastic dilatation associated with
acute probe lateral displacements, omitted in the formulation applicable to obtuse
probes. Subsequent weight-function-based integration of the stress field provided the
crack-driving SIF throughout the contact cycle. The analogous SIFs for the plas-
tic and elastic contact fields were obtained by integration of the more commonly
used stress fields applicable to a hemispherical blister and point contact, respectively.
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Figure 13. Dimensionless stress-intensity factor K as a function of c for cube-corner indentation on
soda-lime glass, calculated using the three-field model and parameters listed in Table 1. A line of
constant K is drawn corresponding to Pmax =10 N is shown.

The sum of these three SIFs generated a complete three-field (residual plastic + elastic
contact +wedging) description of the fracture system, extending the previous two-field
model to cover smaller values of the indenter included angle, 2φ. Imposition of the
equilibrium condition provided a description of radial crack evolution throughout
the contact cycle (the model could easily be modified to describe lateral crack
development).

Emphasis in the analytical development was placed not so much on the functional
forms of the SIFs in terms of indentation load, P , and radial crack length, c (which
are quite straightforward) but on the magnitudes of the amplitude coefficients, χR,
χE and χW (for the residual, elastic and wedging SIFs, respectively) and their scaling
with φ and the material properties of modulus, E, Poissons’s ratio, ν, and hardness,
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Figure 14. (a) Normalized stress-intensity factor (R – residual, E – elastic contact, W – wedging) evo-
lution throughout the indentation load–unload cycle, corresponding to the Pmax =10 N path shown in
Figure 13. At complete unload, KR =T . (b) Radial crack evolution throughout the indentation load-
unload cycle corresponding to the Pmax =10 N path shown in Figure 13.

H . The important crack driving force coefficients, χR and χW, both increase with
decreasing φ, χW more strongly than χR, and whereas χR increases with the mod-
ulus/hardness ratio, E/H,χW does not depend on the resistances to elastic or plastic
deformation at all but on the coupling between lateral and axial elastic deformation,
increasing strongly with decreasing ν. Detailed quantitative comparisons of the cali-
brated and scaled predictions of the three-field model with experimental observations
are performed in Part II, but suffice to say that for acute indenters, χW is about twice
the magnitude of χE (but opposite sign, χE opposes radial crack development and is
<0) and both are about an order of magnitude larger than χR. For obtuse inden-
ters, the magnitudes of all quantities are decreased, rendering the magnitudes of χW

and χE similar, but their sum comparable in magnitude, but opposite in sign, to χR

(χW +χE<0).
Comparison of the two- and three-field models for both Vickers and cube-corner

indentation suggests that the general framework established here is able to match the
qualitative details of obtuse and acute indentation observations. For obtuse inden-
tations, the elastic and wedging SIFs combine to generate a single, reversible, radial
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Figure 15. Schematic section through a conical indentation with angular coordinates φ and θ , and
radial distance coordinate r, centered at the indentation.

crack opposing force (the small functional differences in their load and crack length
dependence are not observable experimentally) that competes with the irreversible
radial crack driving force associated with localized residual plastic deformation. A
two-field description is thus appropriate. Towards the end of the contact cycle, the
residual field dominates and cracks extend to remain in equilibrium with the residual
field at complete unload. For acute indentations, the reversible elastic and wedging
SIFs compete, essentially rendering the residual SIF irrelevant. On loading, the wedg-
ing SIF dominates, leading to large crack driving forces on loading; on unloading,
both the elastic and wedging SIFs decrease to zero, leading to reduced crack driv-
ing forces. These predictions are consistent with the observations of crack extension
on loading, no crack extension on unloading and no dependence on the nature of
the plastic deformation. A three-field description is thus appropriate, although, to
first approximation, a fully reversible two-field (elastic + wedging) model would prob-
ably describe most acute indentation fracture. The dominance of the reversible fields
raises the possibility that crack lengths should actually decrease during the unload-
ing cycle, if equilibrium were maintained. Given the extremely slow crack-healing
kinetics in most brittle materials, metastable trapping of cracks in non-equilibrium
configurations at their maximum length attained at the maximum driving force dur-
ing the unloading cycle is probable. This suggests that toughness estimates obtained
at small-scales via acute indentation fracture may well be substantially in error as
the measured crack lengths reflect neither the assumed dominant residual field nor
an equilibrium configuration.

Appendix A. Indentation stress fields

A short synopsis of the stress fields and observations from Yoffe (Yoffe, 1982) are
reproduced below, as they are used throughout this work. Sharp indentation is
modeled as a two-part stress field, made by combining the action of a punch on
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the surface with a stress field that approximates a center of dilatation (‘blister field’)
located at the surface of a half-space.

The stress field of the indentation due to the loading of the indenter may be con-
veniently approximated by the Boussinesq point-load solution. The Boussinesq stress
field in spherical coordinates, for a point load P , is (Yoffe, 1982)

σr = P

2πr2
(1−2ν −2 (2−ν) cos θ)

σθ = P

2πr2

(1−2ν) cos2 θ

1+ cos θ

σφ = P (1−2ν)

2πr2

[
cos θ − 1

1+ cos θ

]

τrθ =P
(1−2ν)

2πr2

sin θ cos θ

1+ cos θ
.

(A.1)

Relevant to radial cracking are the σφ stress components, which take a maximum
compressive value at the surface (θ =π

/
2),

σφ

∣∣
θ=π/2 =−P (1−2ν)

2πr2
, (A.2)

and a maximum positive value (not considered here) directly beneath the axis of
indentation.

The surface blister field is made by combining three orthogonal double forces
(center of dilatation) with one opposing double force of twice the magnitude.
This combination leaves a plane orthogonal to the larger double force stress- and
displacement-free, and this is used as the general stress field (in the Yoffe formula-
tion) of the elastic-plastic mismatch stresses. The displacement field of the hemispher-
ical blister field is

ur = B

Gr2

[
2 (1−ν)− (5−4ν) cos2 θ

]

uθ = B

Gr2
2 (1−2ν) sin θ cos θ,

(A.3)

where B is a measure of the strength of the field, and G is the shear modulus. As
noted by Yoffe, this increases the volume of any hemisphere of radius r by the same
amount,

π/2∫

0

2πr2ur sin θdθ = 4πB

3E

(1−2ν)

(1−ν)
, (A.4)

where E =2G
/
(1−ν) has been substituted.
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The stress field associated with the hemispherical blister field is

σr = B

r3
4
[
(5−ν) cos2 θ − (2−ν)

]

σθ =−B

r3
2 (1−2ν) cos2 θ

σφ = B

r3
2 (1−2ν)

(
2−3 cos2 θ

)

τrθ = B

r3
4 (1+ν) sin θ cos θ.

(A.5)

The stresses most relevant to the radial cracking system are σφ at θ =π
/

2,

σφ

∣
∣
θ=π/2 = 4B

r3
(1−2ν) . (A.6)

Appendix B. Estimation of displaced elastic and plastic volumes

This development follows the analysis of Wolf and Paufler (Wolf and Paufler, 1999).
The elastic volume displaced at peak load is the total volume displaced by the inden-
ter up to the contact depth, hc, minus the residual displaced plastic volume,

Velastic = αa2

3
[hc −hf ] , (A.7)

where hf is the final depth, that is, the displacement from the original surface where
the indenter last loses contact with the material on unloading (Figure 4). If elastic
unloading at an elastic-plastic contact is described by a power-law function (Oliver
and Pharr, 1992),

P =F(h−hf )
m, (A.8)

then the contact stiffness, S, at Pmax is

Smax = dP

dh

∣∣
∣∣
Pmax

=mF(hmax −hf )
m−1. (A.9)

The semi-empirical relationship between hc and the maximum displacement of the
indenter into the surface of the material, hmax, is

hc =hmax − ε
Pmax

Smax
(A.10)

where ε is a constant, roughly equal to 0.75 (Oliver and Pharr, 1992; Pharr and
Bolshakov, 2002). Substitution and rearrangement of Equations (A.8) and (A.9) into
(A.10) leads to

(hc −hf )= Pmax

Smax
(m− ε) . (A.11)

Substitution of (A.11) into (A.7) yields

Velastic = αa2

3

[
P

S
(m− ε)

]
. (A.12)
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hc, and hf maintain geometrical similarity during the loading cycle, such that an
indentation scale-invariant ratio may be formed,

hc −hf

hc
, (A.13)

and the contact dimension a is linearly related to the contact depth by

a

hc
= tan φedge (A.14)

where φedge is the included angle between the axis of indentation and the sharp edge
of the indenting pyramid. Substitution of (A.13) and (A.14) into (A.12) leads to the
result for the displaced elastic volume

Velastic = αa2

3
[hc −hf ]= αa2hc

3

[
hc −hf

hc

]
= αa3

3

[
1
a

P

S
(m− ε)

]
. (A.15)

Equation (A.15) is an estimation of the displaced elastic volume that is the prod-
uct of a scale-invariant term (in brackets) and an indentation volume, characterized
by the cube of the characteristic contact impression length, a3. Combination of the
modified elastic stiffness relation, Equation (9), (Hay et al., 1999) with the hardness
relation, Equation (2), shows that

P

S
= π1/2

2
α1/2a

(
H

γE

)
(A.16)

which is valid during loading, and up to peak load, if hardness and elastic modulus
are invariant with load. The elastic volume displaced during loading is then a com-
bination of Equations (A.15) and (A.16),

Velastic = α cot φedgea
3

3

[
π1/2α1/2

2 cot φedge

(
H

γE

)
(m− ε)

]
(A.17)

This is the product of the total volume displaced by the indenter, α cot φedgea
3
/

3,
and a plastic deformation attenuation term (in brackets).
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