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ABSTRACT

Cross-correlation of electron backscatter diffraction patterns has been used to

generate stress and strain maps of a single crystal of tetragonal barium titanate

(BaTiO3) containing bundles of small, (0.2–5) lm, a- and c-domains separated by

90� domain boundaries. The strains peaked at the domain boundaries, and

approximately equal, but opposite, values were observed in the a- and c-do-

mains; the peak strain magnitudes were slightly less than half the tetragonal

distortion of BaTiO3, about 0.004, consistent with a tendency to a cubic structure

at domain boundaries. The strain state was dominated by two normal strains:

in-plane, perpendicular to domain wall intersections with the surface, and out-

of-plane, perpendicular to the surface. In distinction to larger, lamellar domains,

significant shear strains were also observed. Stress maps were constructed from

strain maps using a method that does not require zero stress at reference

locations. Peak in-plane normal stresses of approximately 700 MPa were

observed. The variation of the stress component parallel to the domain walls

was used to determine numerically a microstructurally based stress intensity

factor for crack propagation perpendicular to the domain walls. The conditions

for stable micro-crack formation in the microstructural stress field and unsta-

ble crack propagation under the action of a superposed applied stress were

considered in the context of multi-layer ceramic capacitor reliability.

Introduction

Multi-layer ceramic capacitors (MLCCs) [1, 2] are the

most frequently used passive component in micro-

electronic devices. Such capacitors are formed in

submillimeter-scale form factors by co-sintering

interdigitated layers of a dielectric, usually poly-

crystalline barium titanate (BaTiO3) ceramic, and

conducting metallic electrodes. The small dimensions

require modern MLCCs to contain as many as 1000 of

these layers, each sub-micrometer in thickness [3].

Driven by increasing demand, over two trillion

MLCCs are predicted to be manufactured in 2016 [4].

As a consequence of the large number of MLCCs

used, even small deficiencies in MLCC reliability can

lead to large numbers of defective devices. In par-

ticular, fracture of the brittle ceramic dielectric layers,
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and consequent failure of an entire MLCC, is a major

concern of MLCC manufacturers and assemblers of

microelectronic devices. Such fractures can be driven

by localized stresses applied to a MLCC during

attachment to a circuit board or by global stresses

acting almost uniformly over a MLCC during flexure

or bending of a circuit board with a MLCC attached

[5, 6].

The stresses applied to a MLCC during or after

attachment to a circuit board superpose on stresses

preexisting in the BaTiO3 microstructure generated

by two different mechanisms during the co-sintering

process. The first mechanism is related to coefficient

of thermal expansion (CTE) inhomogeneity between

the ceramic and metal layers. On cooling from sin-

tering, the greater CTE value of the metal electrodes

relative to that of the BaTiO3 dielectric leads to

compressive stresses in the BaTiO3. These stresses are

the order of tens of megapascals in magnitude and

vary over length scales set by the millimeter dimen-

sions of the MLCC [7]. As they are small and com-

pressive, these stresses are typically not a ceramic

fracture reliability concern.

The second stress generation mechanism is related

to the anisotropy of the BaTiO3 crystal structure. At

temperatures greater than approximately 120 �C,

BaTiO3 is cubic and paraelectric [2, 8]. At tempera-

tures less than this, BaTiO3 undergoes a cubic–te-

tragonal, and associated paraelectric–ferroelectric,

phase transition such that at room temperature in an

unstrained state, BaTiO3 has a tetragonal unit cell

with the [001] c-axis approximately 1.1% longer than

the [100] and [010] a-axes and ferroelectric polariza-

tion parallel to the c-axis. During MLCC fabrication,

the BaTiO3 initially consists of a porous sheet of

randomly oriented single-crystal particles [1, 2]. On

sintering, a dense microstructure is generated that

thus contains grains and domains (regions of aligned

polarization within grains) of different orientations

separated by grain and domain boundaries. As a

consequence, on cooling BaTiO3 from the sintering

temperature (typically greater than 1000 �C [1, 2]) to

room temperature, tetragonal distortion mismatches

develop between differently oriented grains and

domains as the material passes through the cubic–

tetragonal phase transition. If strain compatibility is

maintained (no cracks, no voids), the mutual con-

straints of neighboring mis-aligned grains and

domains lead to strains and thus reaction stresses.

These stresses are maximized at 90� domain

boundaries, at which the c-axes are perpendicular

(and the c- and one a-axis is colinear) in domains

either side of the boundary [9, 10]; the boundary

plane can be either {101} or {111}. Recent determina-

tions using electron backscatter diffraction (EBSD) of

90� domain boundary-related stresses in BaTiO3 [11]

indicate stresses of hundreds of megapascals varying

over length scales of tens of micrometers set by the

dimensions of the domains. These stresses are both

tensile and compressive and are the major mechani-

cal reliability concern.

Domain boundary-related stresses and strains

determined by EBSD are the focus of the work here,

extending the previous work [11] in two important

ways to approach the domain structures more likely

to appear in modern MLCC polycrystalline BaTiO3

dielectric layers [1, 12]: (1) The domains will be

smaller, micro or nano (a few micrometers to sub-

micrometer) in scale, and (2) the domains will have

more complicated (fully triaxial) stress and strain states.

As context for the current work, Fig. 1a shows a

schematic diagram of the simple domain structure

studied previously. The sample was a predominantly

c-domain single crystal, about 4 mm 9 3 mm 9

1 mm. The domains were long lamellae extending

across the 4 mm 9 3 mm face and through the 1 mm

thickness of the sample; a single a-domain imbedded

in c-domain matrix is shown. As before, ‘‘c-domain’’

indicates that [001] is perpendicular to the large face

(and parallel to Z in the XYZ sample coordinate

system shown) and ‘‘a-domain’’ indicates that [100] or

[010] is perpendicular to the large face. Both a- and c-

domains were observed, both about 10 lm in width,

separated by 90� {101} domain boundaries inclined at

approximately 45� to the sample surface. These are

similar to the ‘‘laminar twinning’’ and ‘‘parallel

stripes’’ structures described in early observations of

BaTiO3 [13, 14].

EBSD patterns were (1) indexed to obtain domain

orientations and (2) cross-correlated to obtain com-

ponents of the strain tensor relative to separate a- and

c-domain reference points within line scans across

lamellar structures as shown in Fig. 1a. Components

of the stress tensor were determined from the strain

components and BaTiO3 elastic constants; the EBSD

measurements were assumed to be surface localized

such that rzz ¼ 0. Figure 2 shows an example of the

variation of strain components exx and ezz across the

lamellae from near the center of a 100-lm scan [11];

the a-domains are indicated by gray shading. For
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both strain components, the strain magnitudes

reached maxima as a domain boundary was

approached and underwent rapid reversal of sign as

the boundary was crossed. The exx and ezz compo-

nents mirrored each other closely, being of opposite

signs with exx about 50% relatively greater than ezz.
The variations in the strain components are consis-

tent with crystallographic considerations as the

tetragonal unit cell rotates 90� about Y at domain

boundaries while maintaining strain compatibility.

The dark-shaded bands in Fig. 2 indicate the range of

the remaining strain components, eyy, exy, eyz, and exz

observed over the same lamellae. All were near-

negligible suggesting a deformation state of plane

strain, eyy ¼ 0, consistent with long lamellar domains

in the Y-direction (Fig. 1a), and variations primarily

in the normal strains exx and ezz, consistent with strain

gradients restricted mostly to the domain boundaries.

Similar localization of strain and strain changes at

long lamellar a–c domain boundaries has been

observed by reflection electron microscopy and X-ray

diffraction [15–18].

The following section contains descriptions of the

materials and methods used here to study stress and

strain states in micro- and nano-scale domains in

BaTiO3. As previously [11], the material is a pre-

dominantly c-domain single crystal, but in this case

containing a-domains that are both smaller and more

complicated in geometry than the lamellae described

above. The experimental methods are similar to those

used previously, although more, and more closely

spaced, EBSD patterns are used in order to charac-

terize the more complicated strain field. Strain is

obtained from EBSD measurements as before, but the

stress analysis is extended from that used previously

to take into account nonzero stress states at reference

points. Strain ellipsoids are introduced to provide

simple pictorial representations of strain changes

within domains and at domain boundaries. A frac-

ture mechanics analysis is developed to determine

crack driving forces from experimental stress mea-

surements. Application of the fracture analysis in

assessing MLCC reliability is demonstrated.

Materials and methods

Materials

The sample used for all experiments was a BaTiO3

single crystal grown by the top-seeded solution

growth method. The as-received sample was a pla-

te 5 mm 9 5 mm 9 1 mm, electrically poled such

that the majority of the sample was oriented as c-

domain, but some 90� and 180� domains were still

present. The sample as-received was polished on one

large face by chemical–mechanical polishing. An

additional polishing step of five minutes using col-

loidal silica was performed on this face. An optical

micrograph of part of the face is shown in Fig. 3a: 90�
domain features appear as vertical dark or light

bands extending across the sample; 180� domains

Figure 1 a Schematic diagram of a single lamellar a-domain

(shown shaded) in a c-domain BaTiO3 crystal. The polarization

directions relative to the XYZ sample axis are indicated with

arrows. b Schematic diagram of a bundle of alternating a- and c-

domains imbedded in a c-domain BaTiO3 crystal. The shading and

sample axes are shown in (a).
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appear as isolated blocky features similar to the early

observations [19, 20]. The dark bands were identified

as lamellar a-domains, similar to those observed in

the previous study [11]. These domains were darker

in contrast to the c-domain matrix, extended across

the sample as straight bands about 10 lm wide, and

exhibited negligible change in surface topography

relative to the surrounding matrix. These domains

and the 180� domains will not be studied here.

The domain-related features studied here were also

linear features, but exhibited lighter overall contrast

relative to the c-domain matrix, extended across the

sample as straight bands parallel to Y approximately

20–50 lm wide, and exhibited an irregular, rough-

ened surface topography primarily parallel to the

long axis of the bands. Such a band is shown in the

right side in Fig. 3a and in a higher magnification

optical image in Fig. 3b. As will be shown below, the

bands consist of many plate-like alternating orienta-

tion domains of micrometer or sub-micrometer width

and are similar to the ‘‘microdomains’’ [21–24] or

‘‘prismatic groups of laminae’’ described previously

[13] and hence will be referred to as micro-domain

bundles. A schematic diagram of the micro-domain

bundles and the XYZ coordinate system used for this

sample is shown in Fig. 1b. Most micro-domain

bundles were aligned along the Y-direction. Several

bundles were examined using the orientation and

strain analyses described below, and the representa-

tive results from a single 45-lm-wide bundle are

presented.

Orientation analysis

The orientations of the sample matrix and domains

were determined from EBSD patterns (EBSPs)

obtained from the sample surface. The surface was

not coated prior to loading into a field emission

scanning electron microscope (Hitachi S4700 FESEM,

Hitachi High Tech, Tokyo, Japan) for EBSD analysis.

High-resolution EBSPs were recorded using an

accelerating voltage of 20 kV and a beam current of

&2 nA with the sample tilted 70� about the X-axis.

Line scans were performed in the X-direction to

obtain rows of EBSPs. For the case here, each row

consisted of 225 EBSPs obtained from points sepa-

rated in the X-direction by 0.2 lm. Full two-di-

mensional (2-D) maps, 45 lm 9 5 lm, were

obtained by combining ten such rows separated in

the Y-direction by 0.5 lm. Each EBSP consisted of

an image of 1344 9 1024 pixels; no binning was

applied to the EBSPs, which were recorded at high

gain with automatic and static background subtrac-

tion. Each pattern was collected in approximately

1 s. Each EBSP was indexed to obtain crystal ori-

entation at a scan point using Oxford HKL Fla-

menco software (version 5.0.9.1, Oxford Instruments,

Abingdon, UK). Kikuchi band detection was deter-

mined with a resolution of the Hough space of 125,

using the band edges from a circular region cen-

tered on the middle of the EBSP with a radius of 511

pixels. Indexing was determined from the automatic

detection of five to six bands and provided the local

orientation of the tetragonal crystal in (1, 2, 3) = (a,

a, c) crystal axes relative to the XYZ sample axes in

terms of microscope Euler angles. A local crystal

orientation in the sample was regarded as part of a

c-domain if the (3, Z) angle was close to 0, and as

part of an a-domain if the (1, Z) angle was close to 0.

In practice, the (2, Y) angle was always close to 0,

Z

X

Figure 2 Strain profiles covering several lamellar domains from

[11]; the dominant exx and ezz strain components are shown and a-

domains are shaded. Also shown are strain ellipsoids from

locations 0.5 lm apart centered on an a-domain (upper) and at

the edge of an a-domain (lower); the strains are magnified 609.

See Online Resource 2 for an animation of these ellipsoids.
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such that the transformation from a c-domain to an

a-domain was accomplished by a ± 90� rotation

about Y.

Elastic constants

In the crystal axes, the stress and strain tensors are

given by rij and eij (i, j = 1, 2, 3), where eij does not

include the tetragonal distortion. In a c-domain, the

(1, 2, 3) crystal axes transform to the (X, Y, Z) sample

axes simply, by (1, 2, 3) ? (X, Y, Z). Thus, in con-

tracted Voigt notation the stress and strain vectors rK
and eL in a c-domain, specified in the sample frame,

are given simply by [25, 26]

rK ¼

rxx
ryy
rzz
ryz
rxz
rxy

2
666664

3
777775
¼

r11

r22

r33
r23

r13

r12

2
666664

3
777775

and eL ¼

exx
eyy
ezz
eyz
exz
exy

2
666664

3
777775
¼

e11

e22

e33

2e23

2e13

2e12

2
666664

3
777775
;

c - domain

ð1Þ

where

rK ¼ ðCKLÞceL ð2Þ

and the indices K and L range over the sample

coordinates as (xx, yy, zz, yz, xz, xy). The elastic

stiffness matrix in the sample frame for tetragonal

barium titanate ðCKLÞc is identical to that specified in

the crystal frame and is given by [26]

CKLð Þc¼

C11 C12 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
C44 0 0

sym: C44 0
C66

2
6666664

3
7777775

¼

275 179 152 0 0 0
275 152 0 0 0

165 0 0 0
54:4 0 0

sym: 54:4 0
113

2
6666664

3
7777775

GPað Þ

ð3Þ

where the second equality gives the numerical values

[27]. In an a-domain, the transformation from the

10 µm

100 µm

(a)

(b)

Figure 3 Optical micrographs of the BaTiO3 crystal examined

here. a Large view of the crystal showing block-like 180� domains

and linear lamellar and bundled 90� domains. b Magnified view of

a micro-domain bundle.

Figure 4 Domain orientation and strain maps across a micro-

domain bundle. The scale for the normal strain components is

given by the upper scale and for the shear strain components by

the lower scale. The locations of the (assigned strain free)

reference points are indicated by the bullseye and arrow symbols.
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crystal frame to the sample frame is (taking ?90�
rotation) (1, 2, 3) ? (Z, Y, -X). Transforming the

stress and strain tensors appropriately [25, 26] and

reverting to contracted notation give

rK ¼

rxx
ryy
rzz
ryz
rxz
rxy

2
666664

3
777775
¼

r33

r22

r11�r12

�r13

r23

2
666664

3
777775

and eK ¼

exx
eyy
ezz
eyz
exz
exy

2
666664

3
777775
¼

e33

e22

e11

�2e12

�2e13

2e23

2
666664

3
777775
;

a - domain

ð4Þ

where

rK ¼ ðCKLÞaeL ð5Þ

and the indices are specified as above. The elastic

stiffness matrix in the sample frame relating the

stress and strain vectors is now given by

Figure 7 Comparison of the maximum strain distributions in

lamellar domains (solid symbols) and micro-domains from

bundles (open symbols). The bars represent the ranges observed,

and a-domain measurements are shown on the right against a

shaded background.

Figure 5 Strain profiles covering several micro-domains taken

from the lower left 10 lm of the maps in Fig. 4. The a-domains

are shown shaded. Note that the normal and shear strain scales are

different.

Z

X

Figure 6 Strain profiles covering the central micro-domains in

Fig. 5. The dominant exx, ezz, and exz strain components are

shown, and a-domains are shaded. Also shown are strain ellipsoids

from locations near the center of a large a-domain (upper), at the

edge of an a-domain (center), and near the center of a small a-

domain (lower). Ellipsoids are drawn with the same scale factor as

shown in Fig. 2. See Online Resource 3 for an animation of these

ellipsoids.
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CKLð Þa¼

C33 C13 C13 0 0 0
C11 C12 0 0 0

C11 0 0 0
C66 0 0

sym: C44 0
C44

2
6666664

3
7777775

ð6Þ

The CKL matrices given above will be used below in

two ways: first, in a limited manner to obtain the full

strain tensor from EBSD measurements, and second,

to obtain the full stress tensor from the full strain

tensor.

Figure 8 Plots of maximum exx, ezz, and exz strain components as

a function of domain size (width) for micro-domains; c-domains

solid symbols, a-domains open symbols. Solid and dashed lines

represent the extrapolated responses for larger lamellar a-domains

and c-domains, respectively.

Figure 9 Domain orientation and stress maps across a micro-

domain bundle (same area as Fig. 4). The locations of the

(assigned strain free) reference points are indicated by the bullseye

and arrow symbols.

(a)

(b)

(c)

Figure 10 a Plot of the variation in the ryy stress component

between locations A and B in Fig. 9. b Plot of the SIF Kl arising

from the stress variation in the upper plot. c Plot of the summed

SIF Kl þ Ka when a uniform applied stress is superposed on the

stress variation in the upper plot.
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Strain analysis

An entire map (2250 EBSPs) was analyzed for strain

using the method of cross-correlation (CrossCourt

3.0, BLG Productions, Bristol, UK). Two reference

patterns were used in each dataset: one in the center

of a c-domain and one in the center of an a-domain

(domains were determined from the orientation

analysis). All c-domains were analyzed with the c-

domain reference, and all a-domains were analyzed

with the a-domain reference. Reference patterns were

assigned (by definition) zero strain; all strains are

thus relative to these points. The eight independent

components of the local traceless distortion tensor,
~Aij, in the crystal coordinates (i, j = 1, 2, 3) were

determined at each location from analysis of 20

regions of interest (256 9 256 pixels) from each EBSP

[28]. The off-diagonal components of ~Aij are identical

to those of the full nine-component distortion tensor,

Aij, e.g., ~A12 ¼ A12, but only two of the diagonal terms

of ~Aij are determined and are expressed in terms of

diagonal components of the full distortion tensor by
~A11 ¼ A11 � A33ð Þ and ~A22 ¼ A22 � A33ð Þ. The local

infinitesimal strain tensor is related to the full dis-

tortion tensor by eij ¼ Aij þ Aji

� �
=2 [25, 26], noting

that for i ¼ j the normal strains are identical to the

diagonal components of the full distortion tensor,

such that, e.g., e11 ¼ A11, and thus, e11 ¼ ð ~A11 þ e33Þ.
To obtain (or close) the full distortion tensor and

obtain the strain tensor, the surface with normal Z is

taken as in traction-free equilibrium such that in the

sample coordinate system rzz ¼ 0 at all locations.

Using these relations and Eqs. 1 to 6, separate

expressions for e33 for each domain type in crystal

coordinates are obtained:

e33 ¼ �
C13

~A11 þ ~A22

� �
2C13 þ C33ð Þ c - domain ð7Þ

e33 ¼ �
C11

~A11 þ C12
~A22

� �
C11 þ C12 þ C13ð Þ a - domain ð8Þ

The full strain tensor in the crystal axes is thus easily

obtained and transformed to the sample axes by

Eqs. 1 or 4.

The strain tensor may be represented by a strain

ellipsoid, given by [26]

x2
I

1 þ eIð Þ2
þ x2

II

1 þ eIIð Þ2
þ x2

III

1 þ eIIIð Þ2
¼ 1 ð9Þ

where eI, eII, and eIII are the local principal strains of

the strain tensor in sample coordinates and xI, xII, and

xIII are coordinates in the conjugate local principal

directions. The size, shape, and orientation of the

strain ellipsoid indicate the deformation a unit sphere

of material has undergone at that location. Repre-

sentations of strain ellipsoids were determined by

solving the tensor equation x � Iþ eð Þ�2�x¼1 at each

location (Mathematica, Wolfram, Champaign, IL),

where x is a vector in XYZ sample coordinates, I is

the identity matrix, and e is the complete strain tensor

also in sample coordinates. This method is mathe-

matically equivalent to determining the eigenvalues

(principal strains, eI; eII; eIII) and eigenvectors (princi-

pal directions, uI; uII; uIII) of the strain tensor at each

location but computationally more efficient.

Stress analysis

By definition, all components of the strain tensor are

zero at the reference points, and thus, using Eqs. 2

and 5, all the stress tensor components are mathe-

matically zero at the reference points as well. In

previous works, the selection of reference point

locations was such that the stresses at the reference

point were likely to be zero, and, in fact, this likely

stress state was the predominant criterion for select-

ing reference point locations. Examples include

locations remote from wedge indentations [29–31],

remote from SiGe overlayers [32, 33], and remote

from domain boundaries [11]. No such location was

readily available in the bundled domain measure-

ments here, and the reference locations were simply

taken in domains with no assurance that the stresses

at those locations were in fact zero. However, global

mechanical equilibrium requires that each compo-

nent of the stress tensor averages separately to zero

[25]. That is,

hrKi ¼ 0 ð10Þ

where h i indicates an average over all locations and

K is taken separately for each stress component (and

thus Eq. 10 represents six separate equations). Stress

was thus evaluated from strain at each location by

extending Eqs. 2 and 5 to

rK ¼ ðCKLÞceL � r0
K

� �
c

ð11Þ

rK ¼ ðCKLÞaeL � r0
K

� �
a

ð12Þ
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The (ten) quantities r0
K

� �
a

and r0
K

� �
c

evaluated were

such that the equilibrium conditions (Eq. 10) were

met separately for each domain type (those for rzz
were automatically fulfilled). In practice, this was

achieved by determining the stress tensor using the

un-modified equations above, calculating the mean

stress for each component thus determined and

subtracting this mean from each component. The

physical meaning of r0
K

� �
a

and r0
K

� �
c

is that they are

the stress components at the reference locations.

Fracture analysis

The spatial variation of stress in the domain

microstructure was used to calculate the driving force

for crack propagation in the ceramic arising from the

constrained phase transformation strains. The crack

driving force was calculated using a microstruc-

turally based stress intensity factor (SIF), Kl. It is

demonstrated how calculating Kl as a function of

crack length c can be used in examples of assessing

MLCC mechanical reliability.

The fracture evolution of a small, sub-micrometer,

crack nucleus located in a region of large tensile

stress is modeled. The microstructural stress gives

rise to a SIF field, Kl cð Þ, that drives crack extension

from such a nucleus. If the crack nucleus is of length

such that the condition Kl cð Þ ¼ T, where T is the

toughness of the material, the nucleus will be in a

state of unstable equilibrium as dKl cð Þ=dc[ 0 at

small crack lengths in a tensile stress field. Any

positive perturbation in nucleus sizes leads to the

condition Kl [T and the crack will initiate and then

grow if the condition Kl [T is maintained.

The SIF driving the growth of a potential straight

crack of length c propagating in the x direction can be

calculated from the stress field prior to cracking using

the formula [34]

Kl cð Þ ¼ 2 c=pð Þ1=2
Zc

0

r xð Þ= c2 � x2
� �1=2

h i
dx; ð13Þ

where r xð Þ is the stress distribution acting over the

crack. Here the discrete ryy xð Þ stress variation will be

taken for r xð Þ (such that a mode-I SIF will be calcu-

lated) and the integral will be calculated numerically.

For slowly varying stress fields, the integral can be

calculated using trapezoidal numerical integration

methods, as in the case of CTE-driven stress fields in

a recent stress mapping study of polycrystalline

alumina [35]. For the rapidly varying stress fields,

here a stronger method based on quadrature was

used. The method is based on the result from inte-

gration of Eq. 13 that a linearly varying stress field, of

the form r xð Þ ¼ aþ bx, acting over a region x1; x2½ � on

a crack, such that x1\x2\c, r1 ¼ r x1ð Þ, and

r2 ¼ r x2ð Þ, gives a contribution DKl cð Þ to the total SIF

of

DKl cð Þ ¼ 2
c

p

� �1=2

a sin�1 x2

c

� �
� sin�1 x1

c

� �h i

� 2
c

p

� �1=2

b c2 � x2
2

� �1=2� c2 � x2
1

� �1=2
h i

ð14Þ

where a ¼ r1x2 � r2x1ð Þ= x2 � x1ð Þ and b ¼ r2 � r1ð Þ=
x2 � x1ð Þ. The numerical integration procedure to

determine the full Kl cð Þ from contributions of many

DKl cð Þ terms was to: (1) select a line scan of discrete

measurements r xið Þ from the stress map, where i is a

position index, and identify a starting location, i = 0,

and direction of propagation for a crack along this

line; (2) select a crack length, c with final index n; (3)

calculate the contributions to the stress intensity fac-

tor using Eq. 14, letting i vary from 0 to n� 1, such

that the indices 1 and 2 in Eq. 14 become i and i ? 1,

and sum the contributions to obtain the full SIF at

that crack length; and finally (4) repeat steps (2) and

(3) for different crack lengths to obtain the function

Kl cð Þ. The accuracy of the numerical procedure was

validated by comparisons with SIFs of known ana-

lytical solutions.

The SIF, Ka, arising from a uniformly applied

stress, ra, on a crack is given by [34]

Ka ¼ p1=2rac
1=2: ð15Þ

A net SIF on the crack, K, can be created by using

K ¼ Kl alone, to represent the effects of the

microstructure on spontaneous micro-cracks in the

ceramic, or the sum K ¼ Kl þ Ka, to represent the

effect of superposed applied stress, say from flexure

of a circuit board [6], on a preexisting microstruc-

turally driven crack.

Results

Strain variation

The domain bundles exhibited more complex strain

variation than the lamellar domains discussed in [11].

To illustrate this added complexity, Fig. 2 includes
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two sets of strain ellipsoids calculated for the lamellar

domains. The ellipsoids are viewed in the X–Z plane,

and strains have been magnified 60 times for easy

visualization. (As the eyy strains for this structure

were negligible, this view shows all the important

information.) The central ellipsoid in each set was

determined at the location indicated by the arrowed

line, in the upper set at the center of an a-domain and

in the lower set at the edge of an a-domain adjacent to

a domain boundary. The ellipsoids either side of the

central ellipsoid are ± 0.5 and ± 1 lm from the cen-

ter, and the range is indicated by braces. In the upper

set, the central ellipsoid is near spherical, consistent

with a state of near-zero strain at the center of a

domain. Either side of this, the ellipsoids become

slightly extended vertically and contracted horizon-

tally as ezz becomes positive and exx becomes negative

on moving away from the center of the domain. In

contrast, for the lower set, the central ellipsoid and

the two to the left are clearly extended vertically and

contracted horizontally, indicative of extremely pos-

itive ezz and extremely negative exx at the a-domain

edge. The right two ellipsoids in the lower set are

contracted vertically and extended horizontally,

reflecting a rapid change in sign of both strain com-

ponents on crossing the domain boundary into the c-

domain. The ellipsoids provide a clear pictorial rep-

resentation of the very small strains at the domain

centers and the large strains and changes in principal

strain magnitudes at the domain boundaries. The

ellipsoids also indicate that the orientations of prin-

cipal strain directions do not alter much in the

structures; the ellipsoid axes uI and uIII are not rota-

ted discernibly from X or Z, consistent with

insignificant shear strains. Online Resource 1 contains

a description of animations of the variation in strain

ellipsoids with location in complete scans across the

lamellar and micro-domain bundle structures. Online

Resource 2 contains the animation for the lamellar

structure, which demonstrates that the observations

in Fig. 2 are representative.

In contrast, Fig. 4 shows orientation and strain

maps for the micro-domain bundle that are more

complicated than the maps from lamellar domains.

The upper map depicts orientation, with a-domains

indicated in red and c-domains indicated in blue (a

color scheme to be used throughout). The locations of

the reference points are indicated by the bullseye (c-

domain) and arrow (a-domain) symbols. About 25

domains of each type are apparent, ranging in size

from the pixel spacing (0.2 lm) to about 5 lm, with

irregular edges aligned approximately along the Y-

direction. Increasing fraction of the c-domain matrix

is visible at the bundle edges. The lower six maps are

color-fill contour maps of the strain components over

the same region. Note that the normal strain com-

ponents color scale strain range is greater than that of

the shear strain components by just over a factor of

three. In all component cases, the variation of the

strain mostly follows the domain orientation, but

includes variations at length scales smaller than the

domains, primarily in the X-direction, but also in the

Y-direction. Not only is the strain pattern more

complicated than that of the lamellae, it has weaker

correlation with the domain orientation [11]. Similar

to the lamellar domains, the strain field is dominated

by the exx and ezz normal strain components, which

exhibit the greatest strain values and strain variabil-

ity. Dissimilar to the lamellar domains, however, are

the magnitudes of the shear strains, which for these

bundled domains are significant, especially exz, and

only a factor of three smaller than the normal strains

compared with more than a factor of ten for the

lamellar domains.

Figure 5 shows the variation in each of the strain

components for the lowest line scan from the left

10 lm of each map from Fig. 4. As before, a-domains

are indicated by gray shading, and the correlation

between strain variation and domain orientation,

particularly for exx, ezz, and exz is apparent. Also

apparent is the strong negative correlation between

exx and ezz, especially in the c-domains. Comparison

with Fig. 2 shows that the signs of strain variation in

the bundled domains for exx and ezz are the same as

those for the lamellar domains: exx is compressive in

a-domains and tensile in c-domains; ezz is compres-

sive in c-domains and tensile in a-domains. This

observation is consistent with crystallographic and

strain compatibility considerations, as noted in

Introduction. Comparison with Fig. 2 also shows that

both the lamellar and bundled domains exhibit the

same spatial variation in strain magnitude with small

strains at the centers of domains that increase as the

domain boundary is approached before reversing

sign at the boundary. The magnitudes of the domi-

nant strain components differ slightly between the

two structures, however, as the lamellar domains

exhibited the greatest strains in the a-domains and
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the bundled domains exhibit the greatest strains in

the c-domains.

Figure 6 shows strain variations and three sets of

strain ellipsoids for the micro-domain bundles. The

visualization conditions are identical to those for

the lamellar domains with the exception that the

ellipsoids either side of the central ellipsoid

are ± 0.2 lm and ± 0.4 lm from the center. The

upper and lower sets of ellipsoids in Fig. 6 are in

the center of a-domains, and the middle set is at

the edge of an a-domain adjacent to a domain

boundary. The upper set of ellipsoids in Fig. 6

closely resembles the upper set of ellipsoids in

Fig. 2: a nearly spherical central ellipsoid reflecting

near-zero strain conditions at the center of a large

domain, with slight elongation of the ellipsoids on

moving away from the domain center. Close

inspection suggests the elongation is along the

diagonal between X and Z, consistent with signifi-

cant shear strain in the domain. The central set of

ellipsoids are centered on the a-domain edge and,

as in the lower set in Fig. 2, the central ellipsoid is

extended vertically and contracted horizontally,

indicative of large positive ezz and negative exx, but

in this case uI is tilted to the diagonal between X

and Z, indicative of the large positive exz. Also as in

the lower set in Fig. 2, the right two ellipsoids in

the middle set in Fig. 6 are contracted vertically

and extended horizontally, reflecting the rapid

changes in sign of both the normal strain compo-

nents on crossing the domain boundary. In this

case, the additional change in sign of the significant

shear strain is now reflected in the reversal in tilt of

the ellipsoids to between the -X and Z axes. The

lower set of ellipsoids in Fig. 6 are centered in a

small a-domain, in which the strain does not decay

to near zero at the domain center, similar to

observations in lamellar domains as a function of

domain size [11]. The strain state is reflected in the

vertical extension, horizontal contraction, and slight

negative tilt of uI of the three central ellipsoids

indicating large positive ezz, large negative exx, and

moderate negative exz. The two outer ellipsoids are

reversed in aspect ratio but not tilt, indicative of

the large normal strain reversals on crossing the

domain boundary with slight increases in shear

strain magnitude. Online Resource 3 contains an

animation for the micro-domain bundle structure,

which demonstrates that the observations in Fig. 6

are representative.

Strain maxima and ranges

Figures 2, 4, 5, and 6 illustrate that there are both

similarities and differences in strain variations, and

their connection to domain boundaries, between the

larger, geometrically simple lamellar domain struc-

ture and the smaller, more complicated micro-do-

main bundle structure. Figure 7 illustrates both the

similarities and a difference in a plot of the maximum

strain observed in a domain for each strain compo-

nent. Data for the lamellar domains and bundle

domains are indicated by solid and open symbols,

respectively; a-domain data are shown with a shaded

background. Data for the lamellar domains were

taken from [11], and those for the bundle domains

were taken from measurements of the bundle

described here and two others. The similarities are

that (1) in both c- and a-domains the normal strain eyy
and all the shear strains fluctuate in a very narrow

band around 0, and (2) in c-domains exx is predomi-

nantly positive and ezz is predominantly negative and

the reverse is true in a-domains. The difference is that

the dispersion in all the normal strains and to a lesser

extent all the shear strains is much greater in the

micro-domain bundles than the lamellae, including

significant differences in sign from the mean values.

The similarities suggest that to first approximation

both structures are in a state of plane strain in the XZ

plane and that strain compatibility is accommodated

by both domain types losing tetragonality and

becoming more cubic adjacent to domain boundaries

with fixed orientation of unit cell axes. The difference

suggests that the plane-strain and fixed axes orien-

tation conditions are less well obeyed locally for the

micro-domain bundles. The more complicated

structure requires a greater diversity of strain states,

including significant shear, to maintain compatibility.

Another difference between the lamellae and the

bundles is illustrated in Fig. 8, which shows plots of

the normal strain ranges observed in each domain as

a function of domain size. For the lamellae [11],

linear relations, albeit with some scatter, were

observed between strain range and domain size

over size ranges of 1 lm to 15 lm; these linear rela-

tions are shown as the solid (c-domains) and dashed

(a-domains) lines in Fig. 8. The symbols in Fig. 8

represent measurements for individual domains in

the three bundles above. No trend with domain size

or type is readily discernible, although the observa-

tions for the lamellar domains appear to be lower
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bounds. The linear trend for the lamellar domains

was interpreted [11] as a similar strain gradient in the

lamellae adjacent to domain boundaries, suggesting a

similar change in unit cell conformation on moving

away from boundaries. The lack of real trend

observed here suggests a much more complicated

and diverse set of changes in unit cell conformation

adjacent to domain boundaries in the bundles, con-

sistent with the greater dispersion of strain ranges

observed in Fig. 7.

Stress and fracture

Figure 9 shows orientation and stress maps for the

micro-domain bundle considered here. The upper

map depicts orientation as shown in Fig. 4. The lower

three maps are color-fill contour maps of stress

components over the same region, calculated from

the strains in Fig. 4 and Eqs. 11 and 12. Compared

with strain, the variation of stress is more smeared

out and more weakly follows the domain orientation,

but still includes variations at length scales smaller

than the domains. The stress pattern is far more

complicated than that of the lamellar domains [11],

which exhibited strong correlation between stress

and domain orientation. Similar to the lamellar

domains, the stress field is dominated by the rxx and

ryy normal stress components, which exhibited the

greatest stress values, of order many hundreds of

megapascals, and stress variability. Also similar to

the lamellar domains, the magnitude of the in-surface

shear stress, rxy, was much less, reaching just over a

hundred megapascals. The mean value of these three

stress components was of course 0 due to the

imposed global equilibrium condition, Eq. 10, and

that for rzz also 0 due to the imposed traction-free

surface condition. The mean value of the remaining,

out-of-plane shear stress components, rxz and ryz,

was also 0 due to the imposed global equilibrium

condition, but these components required minimal

adjustments of only tens of megapascals, as the

experimental measurements already reflected the

traction-free state of the surface and any nonzero

values are attributed to measurement error.

Figure 10a shows the variation of stress ryy along

the line from locations A to B marked in the stress

map in Fig. 9. Location A represents a region of large

tensile ryy in the structure and would thus be a likely

location for crack initiation. Location B represents a

region of large compressive ryy; the stress fluctuates

considerably as a function of position x between the

two locations. Figure 10b shows the variation of the

microstructurally based SIF Kl as a function of crack

length c for a crack propagating from A to B. Kl cð Þ
was determined from ryy xð Þ given in Fig. 10a and

numerical evaluation of Eq. 13. Figure 10c shows the

variation of the sum of Kl þ Ka with Kl taken from

Fig. 10b and Ka cð Þ evaluated from Eq. 15 using

ra = 100 MPa, a value representative of stresses

applied to a MLCC during flexure of a circuit board

[6]. Also shown in Fig. 10b and c are horizontal lines

representing the toughness, T & 0.6 MPa m1/2 of

single-crystal BaTiO3. This value is a lower bound to

measurements on polycrystalline BaTiO3 [36–38].

Examination of the relative values of K and T as a

function of hypothetical crack length from Fig. 10b and

c enables reliability predictions to be made for fracture

within a MLCC. As discussed above, as multi-domain

BaTiO3 cools below the cubic–tetragonal transforma-

tion temperature, stress fields develop throughout the

material as shown in Fig. 9. A small, sub-micrometer

crack nucleus located at A in Fig. 9 would experience a

Kl cð Þ field extending up to and through point B as

shown in Fig. 10b. At the extreme left in Fig. 10b,

Kl c0ð Þ ¼ T and the nucleus is in a state of unsta-

ble equilibrium. The equilibrium is unstable as

dK=dc[ 0 at this crack dimension and any positive

perturbation in nucleus size leads to the condition

K[T and a crack thus initiates and grows. The crack

then follows a nonequilibrium path along Kl cð Þ until

the equilibrium condition K ¼ T is again met, at a crack

length of about c1 = 12.5 lm near the center in Fig. 10b.

At this crack length the equilibrium is stable as here

dK=dc\0 and any positive or negative perturbation in

crack length leads to a crack driving force to restore the

crack to the equilibrium length. Hence, a spontaneous

micro-crack driven by the tetragonal mismatch field

has ‘‘popped-in’’ and arrested. Such micro-cracks also

form in polycrystalline alumina, driven by CTE aniso-

tropy mismatch fields [39].

If the material containing the micro-crack as dis-

cussed above is subsequently exposed to a uniformly

applied stress of 100 MPa, the combined K cð Þ field is

shown in Fig. 10c. No equilibrium configuration now

exists between A and B and K[T over the entire

interval. The imposition of the applied stress leads to

a stable-to-unstable transition for the arrested

12.5 lm micro-crack, followed by nonequilibrium
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extension of the crack. If such extension is uncon-

strained, the crack passes through the entire material;

if contained within a MLCC, the MLCC would be

fractured completely into two pieces.

Discussion

The strain measurements here on BaTiO3 micro-

domain bundles are broadly consistent with previous

measurements on large lamellar BaTiO3 domains

(Fig. 7): As a 90� domain boundary is approached,

the lattice becomes less tetragonal. In c-domains,

there is expansion of the a-axis in the x-direction and

contraction of the c-axis in the z-direction, and in a-

domains there is contraction of the c-axis in the x-

direction and expansion of the a-axis in the z-direc-

tion. X-ray topography measurements [40] are also

consistent with these observations and show that the

boundary regions between 90� domains exhibited

lattice parameters that were strained and intermedi-

ate to those of the tetragonal a- and c-axes. A limit on

the reduction in tetragonality is reached if the lattice

becomes cubic at the boundary (ignoring any shear

that may be present) such that the upper limit to the

normal strains is half the tetragonal distortion. This

leads to maximum strain estimates for the domain

boundary: exx(c-domain) = ezz(a-domain) = 0.0055

and ezz(c-domain) = exx(a-domain) = -0.0055. The

observed maximum values are in good agreement

with these upper bounds. From Fig. 7, the mean

values are exx(c-domain) = 0.0041, ezz(a-domain) =

0.0025, ezz(c-domain) = -0.0037, and exx(a-domain) =

-0.0037, although as noted there was considerable

dispersion in these strain values for the micro-do-

main bundles. The advantage of the 2-D mapping

(Fig. 4) is that such dispersion becomes apparent, a

finding that is difficult to establish in X-ray diffrac-

tion or transmission electron microscopy studies that

examine far fewer boundaries [15–18, 40].

The micro-domain bundles are not just smaller or

narrower versions of the lamellar domains. There are

considerable differences: The micro-domains exhib-

ited significant shear strain, particularly exz, whereas

the lamellar domains did not; as noted above, the

bundles exhibited significantly greater dispersion in

strain than the lamellae; the bundles exhibited no

clear trend of strain range with domain size, whereas

the lamellae exhibited a near-linear dependence; and,

the bundles exhibited a much weaker dependence of

strain and stress variation with location relative to

domain boundaries. These differences most likely

originate from the fact that the domains in the bun-

dles do not extend very far in the Y-direction, along

the bundle length, thus removing the almost plane-

strain constraint exhibited by the lamellae (which

would result in zero shear strains [25, 26, 31]). It is

also possible that the domains in the bundles do not

extend through the sample as shown in Fig. 1b, but

instead are also limited in dimension into the sample

such that the bundle microstructure consists of a

series of microscale platelet domains. Such a

microstructure would lead to tetragonal mismatch in

all three directions, further complicating the strain

field, and would be consistent with the significant

shear strains observed in Fig. 4. The lack of order in

the micro-domain bundles also distinguishes them

from the ordered ‘‘herringbone’’ [9, 14, 19, 23, 24] and

‘‘wedge’’ [22, 23] domain structures that form at

similar small length scales in BaTiO3.

Although much more difficult to quantify, the

characteristic length scale for strain variation in the

micro-domain bundles was much shorter than that

exhibited by the lamellae: about 0.4 lm to 0.6 lm for

both a- and c-domains in the bundles compared with

1 lm to 2 lm for c-domains and 3 lm to 4 lm for a-

domains in the lamellae. However, in both domain

types, this strained transition region was much larger

than the domain wall width, which for BaTiO3 has

been has been determined to be a few nanometers

[41, 42].

The development of the strain and stress maps here

has focused on their use in improving the mechanical

reliability of MLCCs, in particular in predicting the

conditions under which the BaTiO3 ceramic would

fracture. An example of the fracture application is

given in Fig. 10, which considers both a stable crack

generated in the structure under the sole influence of

the microstructurally generated stresses and an

unstable crack driven by a superposed applied stress.

A single prediction of stable micro-crack length as

shown in Fig. 10b can be used in reliability predic-

tions for MLCCs if the stress map in Fig. 9 is devel-

oped at a crack-sensitive location within the MLCC,

say at the edge [7]. Alternatively, many initial crack

nucleus locations and potential crack propagation

directions can be selected in a stress map as shown in

Fig. 9, to generate many SIF variations as shown in

Fig. 10b. The distributions of micro-crack lengths and

orientations within a structure can thus be obtained
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and the degradation of a property, say elastic mod-

ulus [39], for the ceramic in the mapped region of the

MLCC can be predicted. If the MLCC was indeed

subsequently stressed by the imposed bending of an

attached circuit board, predictions of the Kl cð Þ field in

Fig. 10b can be used in concert with the knowledge of

Ka cð Þ to ensure component reliability. In this case,

reliability could be assured by placing an upper

bound on the bending of the circuit board such that

the unconstrained nonequilibrium fracture in Fig. 10c

does not occur.

The development of the strain and stress maps

could also be used in understanding and improving

the electrical properties of BaTiO3 and other ferro-

electrics. As noted in a review of thin-film ferroelectric

oxides [43], many such films are strained due to epi-

taxial deposition on substrates with lattice mismatch.

Perhaps, the most studied example is that of BaTiO3

deposited on SrTiO3 with a lattice mismatch of 2.2%,

for which strain effects are expected in both polar-

ization magnitude and ferroelectric transition tem-

peratures. The strain mapping technique

demonstrated here provides a method for direct

measurement of epitaxial thin-film strains for corre-

lation with, and enhancement of, such electrical

properties. Strain mapping could also be used to

assess strain inhomogeneity or relaxation arising from

dislocation generation associated with minimizing

elastic strain energy in films greater than a critical

thickness, similar to that observed in SiGe films on Si

substrates [33]. In another recent review, it was noted

that domain walls rather than domains could be the

active element in nanoelectronic applications and

devices [44]. The importance of strain in determining

both domain wall configuration and motion was

noted, and EBSD strain mapping techniques, which

can be extended down to near-10 nm spot sizes, can

provide direct measurements for optimizing domain

wall nanoelectronics. There is also the possibility of

providing direct assessments of stress fields predicted

from phase-field modeling of domain boundaries [45]

and the effects of stress and strain on similar model-

ing of domain structure and boundary motion [46].

Finally, there is the exciting prospect of using strain

mapping to develop flexoelectric devices [47, 48].

Such devices rely on the material property of polar-

ization depending on strain gradients, and the results

here make clear that strain gradients are easily mea-

sured for optimizing such materials.

Conclusions

High-resolution EBSD is an extremely effective

measurement tool for quantitative determination of

strain and thus stress in complicated micro- and

nano-scale structures. The method was demonstrated

here on a BaTiO3 crystal containing bundles of a- and

c- micro-domains separated by 90� domain bound-

aries. Orientation and strain maps with 2250 pixels

and 0.2 lm 9 0.5 lm pixel size were generated.

Analysis of the strain maps showed strain variations

within and between domains similar to those

observed in larger, more geometrically regular

domains, consistent with a loss of lattice tetragonality

as an a–c-boundary was approached. The more

complicated micro-domain structure led to a loss of

plane-strain constraint such that significant shear

strains existed in the bundles, distinct from the

lamellae. Nonzero stress reference locations can be

overcome by constructing stress maps from strain

maps using separate imposed equilibrium conditions

such that all stress components average to zero.

Conditions for fracture in the structure can be cal-

culated using a numerical integration scheme to

determine a microstructural-based stress intensity

factor from a stress map. Stable equilibrium sponta-

neous micro-crack lengths and conditions for crack

instability under the action of a superposed applied

stress can both be determined, with direct application

to multi-layer ceramic capacitor reliability.
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