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Prototype cantilevers are presented that enable quantitative surface force measurements using contact-
mode atomic force microscopy (AFM). The “hammerhead” cantilevers facilitate precise optical lever
system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements
and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead can-
tilever of known flexural stiffness and probe length dimension can be used to perform both a sys-
tem calibration as well as surface force measurements in situ, which greatly increases force mea-
surement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows
an optical lever “torque sensitivity” to be generated for the quantification of LFM friction forces.
Precise calibrations were performed on two different AFM instruments, in which torque sensitiv-
ity values were specified with sub-percent relative uncertainty. To examine the potential for accu-
rate lateral force measurements using the prototype cantilevers, finite element analysis predicted
measurement errors of a few percent or less, which could be reduced via refinement of calibra-
tion methodology or cantilever design. The cantilevers are compatible with commercial AFM in-
strumentation and can be used for other AFM techniques such as contact imaging and dynamic mode
measurements. [doi:10.1063/1.3624700]

I. INTRODUCTION

The atomic force microscope (AFM) has become a pri-
mary research tool for small-scale surface and material prop-
erty measurements in physical, chemical, biological, and
medical application areas, including nanotechnology and
biotechnology, as well as in the development of small-scale
devices, such as microelectromechanical systems (MEMS).
The key capability of AFM to resolve small-scale surface
forces—ranging from micronewtons to piconewtons—across
a multitude of material types and environments has led to the
widespread use of AFM as a powerful measurement tool for
applications in which surface forces phenomena can poten-
tially dominate system behavior and properties. For instance,
the development of functional class III and IV MEMS devices
(i.e., those with contacting and moving components),1 certain
new and existing data storage technologies,2 as well as the
formation and manipulation of nanostructures on surfaces3

are examples of applications in which nanoscale friction and
adhesion phenomena can be critical to structure, operation,
functionality, and control. Along with growing demand for
enhanced sophistication and reliability of small-scale tech-
nologies will come measurement needs that include calls
for base-unit-traceable accuracy in small-force measurement.
The distinct lack of accurate small-scale force measurement
procedures is progressively gaining ground as an issue and
much recent effort has been focused on developing precise
and accurate techniques for normal surface force measure-
ment using optical lever AFM and related techniques.4 The
current paper extends this effort to AFM lateral force mea-
surement and the quantification of sliding friction forces in
the micro- to nano-scale range.

The AFM measurement technique known as lateral force
microscopy (LFM) is the principal experimental method used

in the study of friction, adhesion, and lubrication phenom-
ena at the nanoscale (i.e., “nanotribology”), with surface force
measurement sensitivity that typically ranges from hundreds
of micronewtons to hundreds of piconewtons. A LFM fric-
tion measurement is depicted in Fig. 1(a), in which a can-
tilever probe is in contact with a surface and an instrument-
generated relative displacement of the probe and surface, �Y ,
produces a lateral resistance force, FY , caused by friction at
the contact interface. The friction force couples with the probe
lever-arm of length h and the cantilever twists by an angle
φ about its long (x) axis. The twist causes a laser spot (re-
flected from the back of the cantilever) to displace laterally
(horizontal in Fig. 1(a)) on the AFM instrument split-quadrant
optical position sensitive detector (quad-cell PSD), resulting
in a change in lateral deflection output, �VL. Repeated back
and forth �Y motion produces a hysteretic “friction-loop,”
with a half-width (�VL) proportional to FY . The essential cal-
ibration requirement—to make LFM friction measurements
quantitative—is to generate a sensitivity parameter for the
combined cantilever and optical system (“optical lever sys-
tem”) that connects �VL to FY in a precise and accurate
manner.

During a LFM friction measurement, the application of
a lateral force, FY , on the cantilever probe is always asso-
ciated with a normal force, FZ , which causes the cantilever
to deflect flexurally. Fig. 1(b) shows a “force-displacement”
measurement, in which an instrument-generated displacement
ramp, �Z , brings a cantilever probe and an opposing surface
into contact (during “approach” motion) and then out of con-
tact again (during “retract” motion). The probe-surface inter-
action produces flexural deflection of the cantilever through
an angle θ about its short (y) axis, which causes the laser
spot to displace on the instrument PSD (vertical in Fig. 1(a)),
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FIG. 1. (Color online) AFM quasi-static force measurements: (a) Depiction
of a LFM friction measurement, in which a cantilever probe is in contact
with a surface, and relative displacement, �Y , produces a frictional resistance
force (FY ) that couples with the probe lever-arm of length h, such that the
cantilever twists, φ, resulting in a lateral output response, �VL, depicted as
horizontal displacement of the laser spot on the position sensitive detector
(PSD); repeated back and forth �Y motion generates a “friction-loop.” (b)
Depiction of a “force-displacement” ramp, in which approach and retract,
�Z , relative displacement, causes flexural deflection of the cantilever, θ , and
a normal output response, �VN, depicted as vertical displacement of the laser
spot on the PSD; during contact between the cantilever probe and surface,
the “compliance slope” gives the normal sensitivity, S0

N, of the optical lever
system.

resulting in a change in normal deflection output, �VN. While
the cantilever probe is in contact with the opposing surface,
approach and retract motion generates a “compliance slope,”
S0

N, which is used as the normal displacement sensitivity of
the optical lever system. Quantification of the normal force
acting on the probe, FZ , at a given displacement, �Z , in-
volves knowledge of the cantilever flexural stiffness, kZ , as
well as of S0

N. Over the past two decades, many studies have
been devoted to the measurement of AFM cantilever flexu-
ral stiffness,4, 5 and to the interpretation of force-displacement
data,6 such that these measurements are often convention-
ally regarded as routine, despite some remaining challenges
to quantitative interpretation.4, 7, 8 As for normal surface force
measurements, LFM friction force measurements have also
been investigated for around two decades,9 but the practical
realization of calibration parameters for a cantilever torsional
response is a more complicated problem (compared to a flex-
ural response), and there remains no definitive consensus on
an approach for quantitative LFM measurements of friction,
although several methods have been the subject of evaluation
and refinement.10

The “pivot” LFM calibration techniques of Bogdanovic
et al.11 and of Feiler et al.12 induce simultaneous flexure and
twist in the cantilever, in which the flexural component of the

cantilever response is used to calibrate the optical lever sys-
tem for force and torque on the cantilever. That is, the can-
tilever is loaded in the same fashion as it is for “simple” flex-
ure, via a �Z displacement ramp, as in Fig. 1(b), but the
load is offset from the central axis of the cantilever (in the
y-direction). The offset causes the cantilever to undergo flex-
ure and twist simultaneously, which produces both normal,
�VN, and lateral, �VL, deflection outputs from the PSD. The
assumption is that, for small deflections, the flexural and tor-
sional deformation responses of the cantilever are mechani-
cally in-series, but decoupled. The measured twist response
of the optical lever system, �VL, can thus be related to torque
applied to the cantilever via the product of a calculable force,
FZ (via kZ and S0

N), and the distance at which the force is
applied from the shear center of the cantilever, about which
twisting occurs (see later). Bogdanovic et al.11 loaded the can-
tilever by engaging it with a protrusion on a surface during
�Z displacement ramping. Feiler et al.12 glued a stiff beam
to the free-end of the cantilever (orthogonal to its long-axis)
and engaged the free-end of the attached beam with an op-
posing surface during a �Z displacement ramp; the extended
lever-arm generated a greater PSD signal-to-noise ratio, as
there was greater torque on the cantilever. Regardless of the
loading method, the data analysis method of Feiler et al.12

provides for a very robust calibration of the PSD response to
cantilever force and torque when used to perform a pivot cal-
ibration consisting of multiple lever-arm measurements.13, 14

AFM force calibration methods that offer the greatest po-
tential for accuracy are those that can be performed in situ,
along with force measurements, without disturbing the op-
tical lever system between calibration and measurement. A
significant disadvantage of the loading method used by Feiler
et al.12 is that it cannot be performed readily in situ, as the
beam must be attached or removed from the cantilever be-
tween calibration and measurement. The in situ pivot loading
approach of Bogdanovic et al.11 was recently tested and re-
fined in a study that performed pivot calibrations using vari-
ous commercially available rectangular cantilevers. The study
highlighted a limitation in obtainable precision attributed to
the spatial constraints of typical rectangular AFM cantilevers
(i.e., they are narrow).14 In another pivot calibration approach,
a T-shaped cantilever geometry was proposed as a means of
combining the extended lever-arm approach of Feiler et al.
with the in situ loading procedure of Bogdanovic et al. The
study demonstrated that a sensitive and precise in situ pivot
calibration could be obtained for cantilever torsion across the
working range of the PSD relevant to friction measurements,
but it required construction of a cantilever with a T-shaped
(“hammerhead”) geometry near the probe.13

This paper presents a microfabricated T-shaped ham-
merhead cantilever that delivers a precise instrument cal-
ibration for quantitative micro- to nano-scale normal and
lateral (friction) force measurements. Section II describes
AFM force measurement principles relevant to the pivot LFM
calibration technique and its implementation using hammer-
head geometry cantilevers. Section III presents experimental
methods and results: Sec. III A describes the fabrication pro-
cedures used to construct hammerhead cantilevers—a single
hammerhead cantilever was chosen for use in all experiments
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reported in this paper; Sec. III B presents a stiffness property
characterization of the selected hammerhead cantilever using
instrumented indentation direct force-displacement measure-
ments; Sec. III C describes the physical implementation of
hammerhead pivot measurements, in which the selected ham-
merhead cantilever was used to examine method precision
by performing pivot calibrations on two distinct AFM instru-
ment platforms. As a further analysis, AFM pivot data were
used to generate torsional stiffness values for the hammerhead
cantilever (used on both AFM instruments), which could be
also compared with the torsional stiffness value obtained via
instrumented indenter (for the same cantilever). Section IV
presents a finite element analysis of hammerhead cantilever
mechanics, with a focus on underlying assumptions regarding
the accuracy potential of the LFM pivot calibration method
using a hammerhead cantilever. Discussion in Sec. V consid-
ers advantages and limitations of the hammerhead pivot tech-
nique and how it could be further improved.

II. FORCE CALIBRATION AND MEASUREMENT

In the following, AFM quasi-static force measurement
principles relevant to the LFM pivot calibration technique are
described in Sec. II A. In Sec. II B, pivot loading of a ham-
merhead cantilever is described, in which the calibration of an
optical lever torque sensitivity (for the quantification of LFM
friction data) is discussed in Sec. II B 1, and the measurement
of torsional stiffness of a pivot loaded hammerhead cantilever
is discussed in Sec. II B 2.

A. Normal and lateral force measurements

Practically, the application of a LFM lateral force, FY ,
is always associated with some normal applied force, FZ . In
fact, FY is usually interpreted as a function of FZ . Fig. 1(b)
depicts relative displacement, �Z , of a cantilever probe and
opposing surface, so as to generate simple flexural deflection
(rotation) of the cantilever by an angle, θ , out of its plane
and a resulting normal force at the surface, FZ = kθ θ , where
kθ is the rotational stiffness of the cantilever.8 Flexural de-
flection of the cantilever produces a normal deflection PSD
output, �VN, proportional to θ . Small flexural cantilever de-
flections are proportional to force,15 and thus �VN is a mea-
sure of the probe-surface normal interaction force, FZ . The
deflection generates a displacement of the cantilever, w , in
the z-direction. For small deflections, w is proportional to θ ,
and the flexural stiffness (normal spring constant) of the can-
tilever, kZ , is given by FZ = kZ w . For conditions in which the
combined probe-surface-contact stiffness,16 kc

Z , is very large
(kc

Z � kZ ; see later), normal deformation in the vicinity of the
probe-surface interface is negligible, w ≈ �Z , and

FZ = kZ�Z . (1)

Under these conditions, the normal sensitivity of an optical
lever system, S0

N, is given by the compliance slope of a force-
displacement ramp (see Fig. 1(b)), such that

�VN = S0
N�Z , (2)

where the 0 superscript in S0
N indicates that the normal force is

applied with zero offset from the shear center of the cantilever

(i.e., there is nominally zero torque applied about the long axis
of the cantilever). Eqs. (1) and (2) give

FZ = (
kZ/S0

N

)
�VN. (3)

Once S0
N has been determined, knowledge of the cantilever

flexural stiffness, kZ , allows normal forces to be measured
from the PSD normal output, �VN. Surface adhesion from
the snap-in “contact” and pull-off “separation” portions of
force-displacement curves (Fig. 1(b)) are common quasi-
static AFM normal surface force measurements.6

The lateral force, FY , applied at the probe-surface con-
tact during a LFM experiment (via lateral displacement, �Y )
generates a torque, T = FY h, on the cantilever as FY couples
to the probe moment arm of length h, which extends from the
probe-surface contact (at the probe apex) to the shear center
of the cantilever (about which twisting occurs). For fixed h,
small cantilever twist is proportional to torque. As depicted
in Fig. 1(a), as the cantilever twists, the laser spot moves lat-
erally across the PSD and repeated back and forth �Y mo-
tion in a LFM experiment generates a friction-loop. A typ-
ical friction-loop consists of four segments: two “dynamic
friction” segments, in which average lateral deflection values
(�VL) are approximately invariant with �Y ; and two “static
friction” segments. Prior to the onset of relative motion in a
given �Y direction, the response of the probe moment-arm is
set by nominally static friction between the probe and the sur-
face and the response is a lateral compliance. As �Y , and thus
FY , extend beyond a critical value, static friction is exceeded
and the probe slides across the surface in dynamic (sliding)
friction. A LFM measurement procedure involves the deter-
mination of the lateral deflection during dynamic friction by
calculating the difference, �VL, in lateral deflection between
one sliding direction and the other—called the “friction-loop
half-width”—which is proportional to the lateral friction force
at the surface (i.e., �VL ∼ FY ). The example data in Fig. 1(a)
show “noise” in the dynamic portions of the friction-loop,
caused by changes in topography or energy dissipation path-
ways as the probe travels over the surface.17 The method by
which �VL is calculated will thus depend on the focus of a
particular experiment; for example, whether interest is in an
averaged lateral response over an entire slide or in the fine de-
tails of interaction (e.g., atomic-scale stick-slip corrugations).
In any case, a precise and accurate connection between �VL

and FY is required.
In the lateral compliance domain, the lateral force aris-

ing from the imposed surface displacement (�Y ) generates
three cantilever-probe displacements. The first is associated
with a lateral displacement of the cantilever axis in the x–y-
plane, causing a sideways “in-plane” cantilever deflection,18

with a displacement, v . The second is the deformation of the
combined probe-surface-contact spring,16, 19 vc. The third is
the net displacement of the probe that produces twist in the
cantilever, vY = �Y − v − vc. As displacements v and vc do
not lead to either flex (θ ) or twist (φ) of the cantilever, for
all practical purposes, they are not sensed by the instrument
PSD. The displacement, vY , leads to twist, and for small twist,
φ = vY /h. The “torsional stiffness” of the cantilever, kφ ,
relates torque to cantilever twist, and is given by T = kφφ.
The cantilever “torque stiffness,” kT , relates lateral force to
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FIG. 2. (Color online) Application of FZ and FY loads to a hammerhead cantilever via instrument-imposed displacements, showing: (a) Plan and elevation views
of a hammerhead cantilever and probe; (b) Normal loading of the hammerhead cantilever; (c) Lateral (LFM friction) loading of the hammerhead cantilever;
(d) Pivot loading of the hammerhead cantilever.

lateral probe apex displacement, and is given by FY = kT vY ,
analogous to Eq. (1). For small twist, the two stiffness param-
eters are thus related by

kT = (kφ/h2). (4)

In order to measure lateral forces related to frictional probe-
surface interactions in LFM, a calibration procedure is re-
quired to relate FY to the lateral response, �VL. An optical
lever sensitivity parameter, called a “torque sensitivity,” ST,
can be defined in terms of a known torque, T , applied to the
cantilever to produce a lateral response, �VL, such that

ST = (�VL/T ) , (5)

analogous to Eq. (2), and allowing the lateral friction force to
be expressed as

FY = (�VL/STh) , (6)

analogous to Eq. (3). The following Section II B describes
the AFM pivot calibration method for use with hammerhead
cantilevers.

B. Hammerhead pivot measurements

Figure 2 illustrates the application of loads, FZ and FY ,
to a hammerhead cantilever by way of instrument-imposed
displacement. Figure 2(a) depicts plan and elevation views
of the cantilever and probe, in which the effective length of
the cantilever, L*, extends from the fixed-end at the edge of
the handling chip to the probe on the cantilever. The lateral
extensions on either side of the probe are referred to as
“wings.” The probe has an effective length, h, extending from

the probe apex to the shear center of the cantilever. The shear
center of the cantilever is conventionally assigned the location
at the centroid of the cantilever’s rectangular cross-section for
all practically relevant lateral loads imposed on a hammer-
head cantilever during LFM friction experiments (i.e., when
sliding on approximately planar surfaces). This assumption
is investigated later in Sec. IV D. In Fig. 2(b), a (normal)
z-directed force, FZ , is applied to the probe by “�Z ramp-
ing” through a vertical displacement, �Z , such that the can-
tilever deflects flexurally through a distance w . For conditions
in which the probe-surface-contact stiffness (kc

Z ) is effectively
rigid, w ≈ �Z . Figure 2(c) shows the load configuration for
a LFM friction experiment, in which a normal force, FZ , and
a lateral force, FY , are applied simultaneously to the probe to
generate simultaneous flex, w ≈ �Z , and twist, φ, of the can-
tilever. Figure 2(d) shows the load configuration for a pivot
calibration, in which FZ is generated by engaging the can-
tilever with a loading structure, called a “pivot” (typically an
inverted tip or microsphere attached to an opposing surface).
The distance, H, is defined along the y-axis from the posi-
tion of the cantilever shear center to the load point on the
wing. �Z ramping causes the cantilever to twist, φ, as well as
flex through a displacement w( �= �Z ). For uncoupled flexu-
ral and torsional cantilever responses, torque is quantified as
T = FZ H , where FZ = kZ w .

Figures 1(b) and 2(b) show a �Z ramp imposed on a can-
tilever probe to generate force-displacement data from which
the normal displacement sensitivity, S0

N, can be obtained, as
shown in Fig. 1(b). Figure 2(d) shows a �Z ramp imposed
at H on a hammerhead cantilever wing to produce a torque-
displacement response, also required for a hammerhead pivot
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FIG. 3. (Color online) Hammerhead pivot calibration: the three types
of cantilever loading and associated data. The dashed lines represent
force-displacement loading (H = 0), implemented by �Z ramping of the
cantilever probe against a flat surface, which produces normal and lateral
compliance slopes, S0

N and S0
L, respectively. Torque-displacement loading is

implemented by �Z ramping the cantilever wing with a pivot (depicted as a
tip) at a lever-arm distance H. The solid circles represent a H > 0 lever-arm,
which gives the compliance slopes SH>0

N and SH>0
L ; the open circles represent

a H < 0 lever-arm, which gives the compliance slopes SH<0
N and SH<0

L .

calibration. The illustrations in Fig. 3 show the hammerhead
cantilever engaging a pivot (depicted as a tip) for torque-
displacement loading, and engaging a flat surface for force-
displacement loading. Example data for force-displacement
and torque-displacement loading are also shown in Fig. 3.
A hammerhead pivot calibration involves three types of can-
tilever loading data: (1) force-displacement loading, with
H = 0 (dashed lines); (2) torque-displacement loading for
H > 0 lever-arms (solid circles); and (3) torque-displacement
loading for H < 0 lever-arms (open circles). Note that since
�Z displacements are small (nanometers) compared to can-
tilever dimensions (micrometers), H can be considered prac-
tically constant during �Z ramping. Each type of loading
causes a response in both the normal output, VN, and lateral
output, VL, of the instrument. It is the ratio of lateral to nor-
mal output responses—VL per VN—for each H that provide a
pivot torque sensitivity calibration of the optical lever system
(see later).

Force-displacement data provide an indication of the op-
tical lever system alignment, and for the system shown in
Fig. 3, good alignment is indicated by S0

L ≈ 0 in the lateral
response, meaning that the laser spot is tracking the sector
axis of the PSD as the cantilever deflects flexurally (i.e., along
the vertical, VN, PSD axis in Fig.1(b)). Good alignment in
this system is also evident from the torque-displacement data
for equal but opposite lever-arms, H, as both SH>0

N and SH<0
N

traces overlap in the normal output and SH>0
L and SH<0

L traces
are split in equal but opposite directions in the lateral output.
In comparing the two types of optical lever responses, the ob-

servation that SH
N < S0

N is expected, since the cantilever load-
point displacement is accommodated by both flex and twist
in the cantilever during torque-displacement loading (with
H �= 0), compared to only flex in the force-displacement
loading case (with H = 0). It should be noted that good op-
tical lever system alignment, as indicated by the system in
Fig. 3, is not readily achieved in most AFM experimental se-
tups, and a certain degree of optical misalignment is typical.
Optical misalignment produces “crosstalk” between normal
and lateral output channels, caused by misalignment between
the cantilever reflective (beam bounce) surface and the sec-
tor axis of the PSD. Obvious signs of optical crosstalk are:
force-displacement curves that generate a non-zero slope in
the lateral output, S0

L �= 0; for equal but opposite lever-arms,
|H > 0| = |H < 0|, torque-displacement curves that do not
overlap in the normal output (SH>0

N �= SH<0
N ), and do not split

equally in the lateral output (|SH>0
L | �= |SH<0

L |). The effect of
crosstalk on the interpretation of force and torque in this cal-
ibration method is discussed later. Finally, note that the well-
aligned optical lever system represented in Fig. 3 was ob-
tained in experiments separate from all others in this paper.

The principal experimental exercise of this paper is to
demonstrate the performance of a hammerhead cantilever
pivot calibration in determining the torque sensitivity, ST, of
AFM optical lever systems with a high degree of precision.
The following, Sec. II B 1, outlines the principles with which
AFM pivot calibration data can be used to extract an optical
lever system torque sensitivity, ST. To provide further insight
into the underlying metrology of the pivot method and me-
chanics of the hammerhead cantilever in use, Sec. II B 2 out-
lines the measurement of the cantilever torsional stiffness, kφ ,
from AFM pivot calibration data, as well as a possible means
for measuring kφ using a force-displacement measurement in-
strument, such as an instrumented indenter.

1. Torque sensitivity

If the compliance elements controlling cantilever flexure
and twist are uncoupled, then the normal and lateral detector
responses may be treated independently to assess force and
torque on the cantilever. From Eqs. (3) and (5), and recogniz-
ing that the torque on the cantilever in a pivot measurement is
T = FZ H (see Fig. 2(d)), then

�VN = S0
N

kZ
FZ , (7a)

�VL = STT = ST FZ H. (7b)

Eliminating FZ in Eq. (7) gives(
�VL

�VN

)
= H

(
kZ

S0
N

)
ST. (8)

If kZ is known and S0
N is determined from force-displacement

measurements, then measurement of the detector output ratio
(�VL/�VN) as a function of H enables ST to be determined
from Eq. (8). This provides a calibration of the integrated me-
chanical and optical sensitivity of the instrument, such that
frictional forces can be measured through the use of Eq. (6).
An additional contribution to uncertainty in determination of
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the torque sensitivity comes from the fact that kZ is typically
quantified in a separate calibration procedure (ex situ). How-
ever, all other parameters in Eq. (8) are determined in situ,
including S0

N, which is quantified from force-displacement
measurements by setting H = 0.

The ST value of an AFM optical lever system is the
calibration parameter used to quantify LFM friction force
(friction-loop) data, by way of Eq. (6). A cantilever torsional
stiffness value is not required for the measurement of LFM
friction forces in this case. However, the data that are col-
lected for a pivot ST calibration also provide a value of the
cantilever’s torsional stiffness, kφ . The study reported here in-
cludes an analysis of cantilever kφ measurements from pivot
calibration data in order to facilitate a deeper understanding
of the metrology underlying the method.

2. Cantilever torsional stiffness

Assuming the contact between the pivot and cantilever to
be rigid, the loading depicted in Fig. 2(d) suggests three can-
tilever compliances for consideration. The first compliance,
k−1

Z , is associated with flexural deflection of the cantilever, w ,
determined at L*. The second compliance, k−1

φ , is associated
with torsional deflection of the cantilever, φ, also determined
at L*, where k−1

T = k−1
φ H 2 is obtained by setting h = H in

Eq. (4). The third is the compliance of the lateral wing of the
cantilever, (kH

Z )−1, over a distance H. If the wing has a very
small compliance relative to the flexural and torsional can-
tilever springs (i.e., kH

Z � kZ , kT ), where kZ and kT are as-
sumed to be separable and can be treated as uncoupled elastic
elements in series, the displacement of the load point is lin-
early related to the applied force by

FZ = k tot
Z �Z , (9)

where k tot
Z is given by(

k tot
Z

)−1 = (kZ )−1 + (kT)−1 = (kZ )−1 + (kφ)−1 H 2. (10)

Equation (10) suggests a means to measure the combined
flexural-torsional stiffness of a cantilever, k tot

Z , using an ap-
paratus such as an instrumented indenter and associated tech-
niques to measure the flexural stiffness of AFM cantilevers,
described elsewhere.20, 21 That is, if the instrumented indenter
were used to apply pivot loads to a hammerhead cantilever,
by �Z ramping over a range of H values (at L*), while mea-
suring FZ directly, then it should be possible to determine kZ

and kφ using Eq. (10). In principle, such measurements could
provide a traceable determination of cantilever stiffness prop-
erties.

Provided kZ is known, then kφ can also be determined
via an AFM pivot calibration. As shown in Fig. 3, torque-
displacement loading of linear elastic cantilever compliance
elements will generate normal and lateral detector responses
that should be linearly related to the imposed ramp displace-
ment, such that

�VN = SH
N�Z , (11a)

�VL = SH
L �Z . (11b)

Combining Eqs. (7a), (9), (10), and (11a) gives

S0
N

SH
N

− 1 = H 2

(
kZ

kφ

)
, (12)

which provides a method for determining kφ from AFM pivot
measurements by observing the ratio of normal sensitivities
as a function of H.

III. EXPERIMENTAL METHODS AND RESULTS

This section describes the experiments conducted and re-
sults obtained for AFM pivot loading of a prototype hammer-
head cantilever. In Sec. III A, the procedures used to fabri-
cate hammerhead cantilevers are described. From the wafer
batch of cantilevers produced, a single hammerhead cantilever
was selected as the subject of all experimental measurements.
In Sec. III B, the flexural and torsional stiffness values of
the cantilever were measured using an instrumented indenter.
Section III C describes the physical implementation of pivot
calibrations using the selected hammerhead cantilever: in
Sec. III C 1, torque sensitivity calibrations were performed on
two distinct AFM instrument platforms; in Sec. III C 2, pivot
calibration data are used to determine the torsional stiffness
of the cantilever, as measured on the two AFM instrument
platforms, and compared with the torsional stiffness value de-
termined from instrumented indentation measurements (from
Sec. III B).

A. Fabrication of prototype hammerhead cantilevers

Scanning electron microscope (SEM) images of the pro-
totype hammerhead device are shown in Fig. 4, with a typi-
cal “chip” in a wafer carrying two cantilevers with nominal
lengths (x-dimension) L = 500 μm and L = 300 μm, from
the fixed end at the chip edge to the cantilever free-end. Both
types of cantilever have nominal dimensions of 6 μm thick
(z-dimension) and 50 μm wide (y-dimension). The cantilever
long-axis (x-dimension) and wing axes are aligned along the
Si 〈110〉 directions. A 300 μm cantilever was the subject of
all experimental measurements reported in this study.

The hammerhead cantilevers were microfabricated using
a combination of contact optical lithography and deep reac-
tive ion etching (DRIE) of silicon-on-insulator (SOI) wafers.
The use of SOI allowed the buried oxide (BOx) layer between
the SOI device layer and the handle wafer to serve as an etch
stop during DRIE, which provided reasonably good control
over the cantilever thickness for different devices on a wafer.
The 100 mm diameter Si (100) SOI wafer used here had a
nominal device layer thickness of 6 μm with a 1 μm BOx
layer and a 400 μm handle wafer thickness. The plan dimen-
sions of the cantilevers and chip were defined by contact op-
tical lithography using a positive photoresist. Fiducial marks
on the chip were patterned as part of the front side mask and
etched out at the same time as the cantilevers. Subsequent re-
moval of Si from the device layer was accomplished using
DRIE, with the resist serving as a protective mask over device
areas of the wafer. When etching had proceeded through the
entire device layer to the underlying buried oxide, etching was
stopped. A second resist layer was then applied to the back
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FIG. 4. (Color online) Scanning electron microscope images of the prototype
hammerhead cantilever chip. The main picture shows the chip in a wafer, car-
rying two cantilevers: one 500 μm long and the other 300 μm long; both can-
tilevers are nominally 6 μm thick and 50 μm wide. Inset (a) shows a hammer-
head cantilever “head” without probe. Inset (b) shows an underside view of
a cantilever, revealing an approximately 25 μm undercut, resulting from im-
perfect vertical side-wall etching during fabrication. Inset (c) shows a “ramp
dock” area of a chip, with 10 μm increment fiducial marks that are used in
calibration.

of the wafer and patterned using contact optical lithography.
Back side alignment was used to align the back side pattern
(the chip design) to the front side cantilevers. DRIE through
the back side proceeded through the handle wafer until the
BOx layer was reached. At that point, the etching process was
stopped, resulting in a clearly defined chip. A final wet etch
in hydrofluoric acid was used to remove the exposed buried
oxide, which released the cantilevers. The final thickness of
the device layers for the SOI (corresponding to the thickness
of the cantilevers) was measured to be (5.8 ± 0.2) μm using a
white light interferometric microscope.22 The chip design in-
cluded two “notched” legs midway along the chip (shown in
Fig. 4). This insured that the chip was securely held in place
during microfabrication and could be snapped out of the wafer
for use.

The cantilevers were fabricated without integrated tips so
that microspheres could be attached for use as probes (see
later). A hammerhead cantilever “head” is shown in Fig. 4(a),
where a fiducial “center-head” marker can be seen in the cen-
ter of the head to guide positioning of microsphere attach-
ment. The wings extend 75 μm from the center-head marker.
Figure 4(b) shows an underside view of a representative can-
tilever that reveals an undercut shelf at the fixed-end. Under-
cutting occurred during DRIE of the chip from the back side.
The slight deviation from a perfect 90 degree DRIE sidewall
was accentuated by the extreme depth of the etch through the
silicon (400 μm), such that when completed, the front and
back side etches met with an overlap that was estimated to
be 25 μm from SEM images. Figure 4(c) shows the back end

FIG. 5. (Color online) Instrumented indenter stiffness measurements made
across the head of the hammerhead cantilever. (a) Representative data for an
indenter force-displacement measurement. (b) Optical microscope image of
the cantilever with tungsten sphere as the colloidal probe; overlaid on the
image is a depiction of the misalignment between the cantilever axis (solid
line) and indenter loading axis (dotted line). (c) Indenter measurements as a
function of position, H, across cantilever head; the solid line is a fit to the data
assuming an elements (kZ , kφ) in series (flex and twist) cantilever response.

of the chip, which consists of “ramp dock” areas with 10 μm
increment fiducial marks that are used in the calibration
(described in Sec. III C).

B. Indenter measurements

Figure 5 shows direct stiffness measurements of a
hammerhead cantilever using an instrumented indenter.
Figure 5(a) shows representative indenter force-displacement
data, composed of 1024 data points collected for typical in-
denter displacements, �Z , of 400 nm to 500 nm. The mea-
sured stiffness values, k tot

Z , were determined from the slopes
of the force-displacement data (as in Fig. 5(a)), obtained us-
ing least-squares linear fitting.23 Figure 5(b) shows the ham-
merhead cantilever used for all experimental work. It was
constructed as a “colloidal probe” by epoxy gluing a tung-
sten sphere onto the center-head marker of the cantilever
head (see Fig. 4(a)). The sphere diameter was measured
to be (25.9 ± 0.2) μm using a white light interferometric
microscope.22 A small patch of the epoxy resin, used to glue
the sphere to the cantilever, can be seen on the cantilever
near the upper left-hand-side of the sphere in Fig. 5(b). Fig-
ure 5(c) shows instrumented indenter measured stiffness, k tot

Z ,
versus lever-arm distance, H. Data symbols in Fig. 5(c) rep-
resent the mean and standard deviation of five non-sequential
repeat force-displacement measurements (as in Fig. 5(a)) at
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TABLE I. Experimentally determined cantilever and optical lever system properties.

Cantilever property Optical lever system property

Flexural stiffness, Torsional stiffness, Normal sensitivity, Torque sensitivity,
Instrument kZ (N m−1) kφ (nN m rad−1) S0

N (V μm−1) ST (V nN−1 m−1)

Instrumented Indenter 16.3 ± 0.1 500 ± 18 N.A. N.A.
AFM Instrument A N.A. 503 ± 17 13.40 ± 0.02 6.14 ± 0.01
AFM Instrument B N.A. 471 ± 10 3.59 ± 0.01 0.169 ± 0.001

each lever-arm distance, H, across the head of the hammer-
head cantilever (at a distance L* along the cantilever length).
For the determination of H values, the estimated uncertainty
in instrument positioning of the indenter probe on the can-
tilever (±2 μm) is smaller than the symbol size. Lever-arm
measurements less than H = ±30 μm were not recorded due
to mechanical interference or slippage between the indenter
probe and the cantilever probe. Figure 5(c) shows an asym-
metry about H = 0 in the measured stiffness (e.g., compare
k tot

Z values for H = −70 μm with H = +70 μm), which was
caused by a small misalignment (≈ 1◦) between the axis of
the cantilever (depicted by solid line in Fig. 5(b)) and the
indenter positioning stage axis (depicted by dotted line in
Fig. 5(b)). This resulted in H < 0 measurements that were
made closer to the cantilever fixed end (generating a greater
stiffness) than H > 0 measurements (generating less stiff-
ness). The solid line on the plot in Fig. 5(c) represents the
results of a linear least-squares fit of the data to the springs-
in-series model, Eq. (10), providing stiffness values for the
hammerhead cantilever of kZ = (16.3 ± 0.1) N m−1 and kφ

= (500 ± 18) nN m rad−1. These values are also listed in
Table I. To calculate these values, the average measured
stiffness at each H was fit in linearized coordinates of
Eq. (10), (k tot

Z )−1 and H 2, where associated statistical un-
certainties of the fit parameter stiffness values are given
as the standard errors of the fit.23 Note that the uncer-
tainties quoted for these measurements represent statistical
uncertainties that do not include a potential measurement
uncertainty (up to about 5%) in the force-displacement ac-
curacy of the indenter instrument used here.21 Another con-
sideration is the stiffness of the contact between the inden-
ter tip and cantilever: for a typical contact load of 5 μN
and an indenter tip radius of about 3 μm, the Hertzian
contact stiffness is approximately 12.5 kN m−1, about three
orders of magnitude greater than the flexural stiffness of
the cantilever, showing that the required condition, kc

Z
� kZ , is met, and that contact deformation is negligible rel-
ative to flexural deformation of the cantilever.16 Approxi-
mate guidance from beam theory gives flexural and torsional
stiffness values of (15.3 < kZ < 19.9) N m−1 and (502 < kφ

< 547) nN m rad−1, respectively, using elastic constants ap-
propriate to extension in the [110] direction and shear in the
(110) plane,24 for a rectangular silicon beam with dimensions
of width = 50 μm, thickness = 5.8 μm, and bounds on the
effective length, (300 > L* > 275) μm, based on the appar-
ent x-dimension of the undercut shelf from SEM images (see
Fig. 4(b); Sec. III A). Although these calculations are esti-
mates, the beam theory exercise also serves to emphasize that

techniques relying on dimensional measurements to describe
the mechanical behavior of AFM cantilevers can be suscep-
tible to significant errors arising from those measurements.
In this case, the extent to which the undercut shelf formed
part of the effective cantilever length, and the position and ex-
tent to which the shelf itself could be regarded as “pinned”
to the chip, was not clear. Referring to Eq. (8), uncertainty
in the determination of kZ directly propagates to uncertainty
in the determination of optical lever torque sensitivity, ST,
for the measurement of lateral forces (obviously, it propa-
gates to uncertainty in normal forces as well, Eq. (3)). The
instrumented indenter kZ value determined here was asso-
ciated with a very low statistical uncertainty, demonstrating
good precision. Considerably more involved would have been
an accurate (SI-traceable) determination of kZ , which was not
conducted.

C. AFM pivot measurements

For the hammerhead pivot calibration technique de-
scribed in this work, basic instrument requirements are a
LFM-type (quad-cell PSD) AFM instrument with top-down
optics, for viewing the experimental setup, and micro-scale
positioning stages for x-y movement of the cantilever relative
to the surface, or vice versa. The physical implementation of
a hammerhead pivot calibration is depicted in Fig. 6. In Fig.
6(a), a “ramp chip” is mounted on or beside an experimen-
tal surface of interest and a selected hammerhead cantilever
is installed in the AFM instrument. This cantilever is used to
both calibrate the optical lever system (S0

N, ST) as well as per-
form friction-loop measurements (�VL) on the experimental
surface. In calibrating ST, Fig. 6(b) depicts the configuration
for a pivot torque-displacement ramp, where the wing of the
hammerhead cantilever is in contact with the right dock of the
ramp chip at a lever-arm length, H. The probe (out of view
on the underside of the cantilever) is positioned at the cen-
ter of the head, at an effective cantilever length, L*, from the
fixed end of the cantilever. Imposed normal displacement of
the ramp chip or cantilever, �Z , causes the cantilever to both
flex and twist due to the load offset, H.

For the experimental results discussed in this section,
force-displacement curves were generated by �Z ramping
the probe on a flat, featureless area of the ramp chip. Torque-
displacement curves were generated by �Z ramping on the
cantilever wing, as depicted in Fig. 6(b), where fiducial marks
on the ramp chip allowed for contact to be established be-
tween cantilever and chip at a desired lever-arm length,
H, determined readily through the overhead optics of the
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FIG. 6. (Color online) Physical implementation of a hammerhead pivot cal-
ibration. (a) An example experimental setup in which a “ramp chip” is
mounted on an experimental surface of interest and a selected hammerhead
cantilever is installed in the AFM instrument in preparation for a friction ex-
periment. (b) A lever-arm wing of the hammerhead cantilever in contact with
the right dock of the ramp chip; the probe (out of view on the underside of
the cantilever) is positioned at the center of the head at an effective cantilever
length, L*, from the fixed end of the cantilever; relative displacement of the
ramp chip or cantilever in the z-direction, �Z , causes the cantilever to both
flex and twist due to the load offset, H.

AFM instrument. As a means of establishing “point” contacts
between the cantilever and ramp chip, two tungsten spheres
were chosen such that they were both (10 ± 0.5) μm in
diameter.22 The spheres were epoxy glued between the chip
edge and the first fiducial mark, one on the right dock and one
on the left dock, of the ramp chip (not shown).

1. Torque sensitivity calibration

Figure 7 shows torque sensitivity (ST) pivot calibra-
tion plots for two different AFM instrument platforms, “In-

FIG. 7. (Color online) Pivot calibration data collected on two different AFM
instruments using the same hammerhead cantilever. The fitted slope of each
plot provides the torque sensitivity, ST, of the respective optical lever system:
“Instrument A” (solid squares) and “Instrument B” (open circles). The insets
show representative (VL vs. VN) pivot data, collected at H = +70 μm for
both instruments. The fitted linear slope of each individual (VL vs. VN) ob-
servation provides a �VL/�VN data contribution to the main plot (the con-
tribution of the inset data is indicated by arrows). Each data point in the main
plot represents the average of five such �VL/�VN measurements, repeated
non-sequentially throughout the calibration for each H lever-arm (x and y
uncertainties are smaller than the data points used).

strument A” (solid squares) and “Instrument B” (open cir-
cles), using the same hammerhead cantilever as pictured in
Fig. 5(b). As suggested by Eq. (8), the output response ratio,
�VL/�VN, is plotted in Fig. 7 against the optical lever-arm
parameter, HkZ(S0

N)−1. The later has three components: kZ,
which was determined in this work by instrumented inden-
tation measurements, described previously (Sec. III B); S0

N
was determined from force-displacement data obtained dur-
ing the pivot calibration; and H lever-arm values were also
implemented during the pivot calibration. For the experiments
described here, the lever-arms used were: H = 0; H > 0 (i.e.,
+40 μm, +50 μm, +60 μm, and +70 μm); and H < 0 (i.e.,
−40 μm, −50 μm, −60 μm, and −70 μm); where lever-arm
measurement uncertainties were assigned ±2 μm, based on
the uncertainty of manual H positioning for the AFM instru-
ments used. The insets in Fig. 7 show representative (VL vs.
VN) pivot data, collected at H = +70 μm for both instru-
ments. All (VL vs. VN) data observed in these experiments
were highly linear. The fitted slope of each individual (VL

vs. VN) observation provides a �VL/�VN data contribution
to the main plot (the contribution of the inset data is indicated
by arrows). Each H �= 0 data point in the main plot repre-
sents the mean and standard deviation of five non-sequential
repeat torque-displacement measurements (uncertainties for
both �VL/�VN and HkZ (S0

N)−1 are smaller than the sym-
bol size shown). Note that data at H = 0 are generated by
force-displacement loading, which is also used to determine
the normal sensitivity, S0

N, of the optical lever system. The S0
N

values in Table I represent the mean and standard deviation
of 10 non-sequential repeat force-displacement S0

N measure-
ments obtained over the course of each calibration for Fig. 7.
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From the main plot in Fig. 7 (and Eq. (8)), torque sensitivity,
ST, values for each instrument were calculated as the slope of
each plot from least-squares linear fitting.23 These values are
listed in Table I, from which Instrument A is clearly more sen-
sitive to cantilever flex and twist than Instrument B, with S0

N
values differing by a factor of almost 4 and ST values differing
by more than a factor of 30.

It is apparent in Fig. 7 that ST calibration plots for both
Instruments A and B show a non-zero �VL/�VN intercept
value at H = 0. A non-zero intercept in a ST calibration
plot is caused by system crosstalk. Mechanical crosstalk oc-
curs when an AFM cantilever experiences actual mechanical
torque under conditions where torque is supposed to be zero.
A common cause of mechanical crosstalk is a probe that is
not y-aligned with the shear center of the cantilever, and in
the case of a multiple lever-arm pivot ST calibration, signifi-
cant mechanical crosstalk would be revealed by nominal zero-
torque data (H = 0) that fail to form part of a good linear fit
with torque (H �= 0) data.14 Mechanical crosstalk was not ob-
served in experiments conducted here. In many cases, system
crosstalk results from optical misalignment—a misalignment
between the cantilever reflective (beam bounce) surface and
the sector axis of the PSD—which produces a lateral output
during flexural deflection of the cantilever, when torque on
the cantilever is zero (H = 0). In the calibration experiments
reported in Fig. 7, optical misalignment produced an Instru-
ment A system crosstalk of (�VL/�VN)H=0 = −0.023, and
for Instrument B, (�VL/�VN)H=0 = −0.008. The fact that
optical crosstalk is a typical observation in LFM-type optical
lever systems suggests that Eq. (8) should be modified to in-
clude an intercept term and a perhaps a slope correction for
any effect that crosstalk may have on ST. Discussed further in
Sec. V, for optical misalignments that are typically encoun-
tered and practically reasonable, crosstalk has only a minimal
effect on the measurement of torque sensitivity (less than 1%
additional uncertainty in ST).

2. Cantilever torsional stiffness measurement

The data that provide a torque sensitivity (ST) calibra-
tion of an AFM optical lever system can also be used to de-
termine the torsional stiffness of the cantilever (kφ). A tor-
sional stiffness measurement uses the normal sensitivity pa-
rameters, S0

N and SH
N , determined during force-displacement

and torque-displacement measurements, respectively (Sec. II
B). For the experiments conducted here, Fig. 8 is a plot of
the left-hand-side of Eq. (12), (S0

N/SH
N ) − 1, versus the lever-

arm parameter, H 2kZ. The inverse of the fitted slope is kφ , ac-
cording to Eq. (12). Figure 8 uses the same symbols scheme
as Fig. 7. In the main plot of Fig. 8, each symbol represents
the mean and standard deviation of five non-sequential repeat
measurements at each of the lever-arms used. The uncertain-
ties in H 2kZ are smaller than the symbol size. To provide a
basis for comparison between AFM and indenter instrumen-
tation, the flexural stiffness value of the cantilever used for
all experimental data was the instrumented indenter deter-
mined value of kZ = (16.3 ± 0.1) N m−1 (Sec. III B). On the
Fig. 8 main plot, the solid line represents the torsional stiff-

FIG. 8. (Color online) Pivot torsional stiffness measurements of the hammer-
head cantilever on two different AFM instrument platforms (same symbols
scheme as Fig. 7). The main plot shows averaged data, which is compared to
the instrumented indenter value (solid line). All data collected on Instrument
A are shown in inset (a); all data collected on Instrument B are shown in in-
set (b). Inset (c) is an illustrative representation of the optical lever system of
both instruments as they were observed here.

ness of the cantilever determined by the instrumented inden-
ter, kφ = (500 ± 18) nN m rad−1. Table I lists the cantilever kφ

values obtained by all three instruments, which show agree-
ment within two standard errors.

While each data point in the main plot of Fig. 8 rep-
resents the mean value of five non-sequential repeat mea-
surements at each of the lever-arms used, the insets show
all data collected for Instrument A, in Fig. 8(a), and all
data for Instrument B, in Fig. 8(b). The inset plots reveal
systematic deviations in the determination of (S0

N/SH
N ) − 1,

which tend to increase with increasing H. In fact, the sys-
tem response is split according to H > 0 and H < 0 lever-
arms for both instruments. The splitting effect is due to
crosstalk caused by the optical misalignment described above.
(Again, note that the example data shown in Fig. 3 were ac-
quired especially to demonstrate the basic principles of the
pivot calibration technique using a well-aligned optical lever
system; the Fig. 3 data are not related to data shown in
Figs. 7 and 8.) To illustrate the misalignment that was present
in both instruments A and B, inset Fig. 8(c) depicts the up-
per two quadrants of a PSD, along with conceptual lines
that represent laser spot movement during cantilever loading
for: H = 0 force-displacement loading, generating S0

N (cen-
ter); H > 0 torque-displacement loading, generating SH>0

N
(right); and H < 0 torque-displacement loading, generating
SH<0

N (left). The configuration shown in Fig. 8(c) is repre-
sentative of the state of both AFM instruments as they hap-
pened to be set up for these experiments, such that the order
of normal sensitivities was found to be S0

N > SH>0
N > SH<0

N . In
other words, the optical crosstalk caused and perpetuated the
difference (S0

N/SH>0
N ) − 1 < (S0

N/SH<0
N ) − 1, which became

progressively greater with larger cantilever twist (i.e., larger
H). In the case of each instrument, a kφ value was obtained by
applying a least-squares linear fit to all data23 (see Sec. V for
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more discussion on this fitting approach), which gave inverse
slopes of kφ = (503 ± 17) nN m rad−1 for Instrument A and
kφ = (471 ± 10) nN m rad−1 for Instrument B. These values
are listed in Table I.

IV. ANALYSIS OF HAMMERHEAD CANTILEVER
MECHANICS

In Sec. III of this paper, the hammerhead pivot method
was examined experimentally, with a focus on precision in
calibrating the torque sensitivity (ST) of AFM optical lever
systems, via Eq. (8). In this section, the potential accuracy
of the pivot method is investigated by way of mechanical
simulation.

The accuracy of the pivot torque sensitivity method re-
lies on the simultaneous validity of Eqs. (2), (3), (6), and (8),
where Eqs. (3) and (6) describe how the cantilever is used as
an optical lever force transducer, and Eqs. (2) and (8) are used
to calibrate the AFM optical lever sensitivities, S0

N and ST,
respectively. When used as a force transducer, the cantilever
is loaded at the probe apex. During a pivot calibration, the
hammerhead cantilever is loaded on the wings as well as on
the probe. While relating one load configuration to another in
this way is supported by beam theories for flexure and tor-
sion, the accuracy of these theories is limited by the simpli-
fying assumptions that were used to derive them. In the light
of the precision demonstrated by experimental measurements
in Sec. III (i.e., <1 % statistical uncertainty), this section de-
scribes the use of three-dimensional continuum elasticity the-
ory, implemented via the finite element method,25 to estimate
the magnitude of possible systematic errors resulting from
simplifying assumptions about the cantilever mechanics im-
plicit in the hammerhead pivot calibration method.

In the following, Sec. IV A discusses the properties of
the cantilever model, the application of simulated loads to
the model and analysis of its response, as well as analy-
sis of simulation measurement errors. Analysis of the ham-
merhead cantilever mechanics involved simulating the ex-
periments described in previous sections of this paper. In
Sec. IV B, simulated instrumented indentation loading is
discussed—analogous to experiments in Sec. III B. In Sec.
IV C, simulated AFM pivot loading is examined—analogous
to experiments in Sec. III C—in terms of its potential to ac-
curately calibrate lateral forces. Section IV D examines the
approximation that, during lateral loading at the apex of the
probe, the shear center of the cantilever is located at the cen-
troid of its rectangular cross-section, along the entire can-
tilever length (x-axis), such that the moment lever-arm, h, can
be determined from the distance between the centroid and the
load point.

A. Simulation methods

The prototype hammerhead cantilever model was gener-
ated and analyzed using commercial software. The following
describes the simulation procedure in terms of the physical
properties of the model, the application of loads and analy-
sis of response, as well as analysis of errors in relation to a
(simulated) pivot calibration.

FIG. 9. (Color online) Finite element model of hammerhead cantilever
(medium mesh). (a) Cantilever dimensions and typical forces applied to the
probe side of the cantilever. (b) The beam-bounce side of the cantilever, along
with the shaded “head” region (and “neck” region), used to determine angular
deflection responses of the cantilever. (c)-(e) Simulated deformed cantilevers
in response to 5 μN loads, in which displacements are magnified 100 times
and contours indicate elastic strain energy density; the lever-arm used in (e)
is H = 40 μm.

1. Cantilever model properties

Representative illustrations of the hammerhead cantilever
model are shown in Fig. 9, where Fig. 9(a) is the “probe
side” of the cantilever model with dimensions and loads rel-
evant to pivot and lateral loading. Fig. 9(b) shows the “beam
bounce side” of the cantilever (opposite side to probe), show-
ing two regions that were used to observe the flexural, θ , and
torsional, φ, angular deflection responses of the cantilever:
the 50 μm × 150 μm “head” region and the 50 μm × 50 μm
“neck” region. While the majority of analysis used the head
region to calculate cantilever deflection, a later analysis in
Sec. IV C 2 compares the deflection response of the cantilever
across the head versus across the neck.

Silicon elastic constants used for the cantilever ma-
terial were:24 c11 = 165.77 GPa, c12 = 63.924 GPa, and c44

= 79.619 GPa. The x–y-plane of the cantilever was the {100}
plane and the longitudinal axis of the cantilever (x-direction)
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was a 〈110〉 direction. Outlined in Appendix A, the model
consisted of 10-node quadratic tetrahedrons, and a sequence
of three mesh densities was used to generate estimated values
and numerical errors. The dimensions of the model, shown
in Fig. 9, correspond to the nominal dimensions of the mi-
crofabricated cantilevers used in experiment: 300 μm long
(x-dimension), 50 μm wide (y-dimension) and 6 μm thick
(z-dimension). The cantilever probe is located at x = 275 μm
from the base and at y = 0 in the center of the head. The probe
was modeled as a cylinder with a 10 μm radius, terminating
in a hemispherical cap of 10 μm radius; the total height of the
probe, with cap, was 20 μm (Fig. 9(a)). The probe lever-arm
length was thus h = 23 μm, which incorporates the probe
length (from the base of the cylinder to the apex of the cap)
and half the thickness of the cantilever. No attempt was made
to exactly reproduce the dimensions and material properties
specific to the cantilever used in experiments, not least be-
cause properties such as thickness and uniformity are difficult
to ascertain, and furthermore, the fixed-end boundary condi-
tions used in the model were set as fully constrained, which
neglects the actual boundary conditions that would exist in
the area where the cantilever meets the handling chip, par-
ticularly considering the undercut shelf present on microfab-
ricated cantilevers used in this work (see Fig. 4(b)). A more
realistic boundary condition, for the region where the base of
the cantilever meets the handling chip, was not specifically
investigated in this work.

2. Load and response modeling

For all modeling analysis carried out here, simulated
forces applied to the cantilever model were 5 μN, which rep-
resents a typical large (about maximum) load used in experi-
ments. The applied forces were approximated as point forces,
a convenient simplification in numerical modeling when, as
in the experiments here (Sec. III B), contact compliance can
be neglected (Appendix A). To illustrate the distribution of
elastic deformation in the cantilever during each of the three
load configurations relevant to this work, Figs. 9(c)–9(e) show
elastic strain energy density profiles for: FZ on the probe (nor-
mal loading), in (c); FZ and FY applied simultaneously on the
probe (lateral friction loading), in (d); and, FZ in pivot loading
on the wing at a lever-arm distance H = 40 μm, in (e). Note
that Figs. 9(d) and 9(e) show similar energy density distribu-
tions for LFM friction loading and pivot loading, respectively.

Analysis of the hammerhead cantilever mechanics in-
volved simulating the experiments described in previous sec-
tions of this paper. Analogous to instrumented indentation ex-
periments (Sec. III B), the results of simulated indentation
loading are summarized in Sec. IV B below, and described in
greater detail in Appendix B. In order to simulate AFM pivot
loading experiments (Sec. III C), the results of cantilever head
rotations in response to applied (pivot) loads are summarized
in Sec. IV C below. To provide a basis for AFM pivot load-
ing analysis, the optical lever sensitivity and force transduc-
tion equations that are central to an AFM pivot calibration—
Eqs. (2), (3), (6), and (8)—were “conceptually transferred”
from the AFM optical lever system domain to the mechan-

ical domain of the finite element model by assuming the
gains of both normal and lateral quad-cell PSD sectors to
be 1 V rad−1. In this case, expressions for cantilever force,
FZ = kZ�Z = kθ θ , and torque, T = kφφ, (Sec. II A) were
then subjected to the substitutions, �VN → θ and �VL → φ,
respectively, giving S0

N → k−1
θ kZ and ST → k−1

φ , respectively.
Using these substitutions, Eqs. (2), (3), (6) and (8) become

θ = k−1
θ (FZ )I , (2′)

(FZ )O = kθ θ, (3′)

(FY )O = (kφ/h)φ, (6′)

φ

θ
=

(
kθ

kφ

)
H. (8′)

The above equations are referred to henceforth as the “cal-
ibration equations”; the subscript ()I indicates input forces,
which are forces applied directly to the cantilever; the sub-
script ()O indicates output forces, which are the forces deter-
mined via simulated calibration. Cantilever rotations, θ and
φ, were calculated using the small-angle formulas applied to
the average surface gradients of the “head” region of the ham-
merhead cantilever (Fig. 9(b)), such that

θ = ∂z′/∂x = − Ax

Az
, φ = −∂z′/∂y = Ay

Az
,

with �A =
∮

�r × −→
dl , (13)

where z′ is the vertical position of the deformed top surface
of the head (as a function of x and y), and the contour integral
is taken over the boundary of the top surface of the head.

3. Estimation of errors

In performing simulations, physical quantities (such as
forces and displacements) were obtained via analysis of
three mesh densities of the cantilever model. Outlined in
Appendix A, the results for each model were obtained and
then trends in numerical results were analyzed using the
Richardson extrapolation method26 to obtain the best estimate
for the physical quantity and associated numerical error, re-
ported in the form (A ± B), where A is the best estimator of
the quantity and B is the numerical error in that estimator.

The quantities of interest in the simulation study were
the system calibration parameters and the interpretation of
forces via those calibration parameters, both generated by
methods analogous to experimental procedure. In the me-
chanical domain of the numerical simulation, the calibra-
tion parameters that are analogous to S0

N and ST are actu-
ally cantilever stiffness and compliance parameters, kZ k−1

θ

and k−1
φ , respectively. Systematic errors in these parameters

were determined by comparing them against “reference val-
ues,” which are listed in Table II as cantilever stiffness val-
ues, (k)exact, and compliances, (k−1)exact. For all practical pur-
poses in this work, the reference values were assumed to
carry zero systematic error into the calculation of calibra-
tion parameters and forces. The reference value (kZ )exact was
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TABLE II. Reference values for simulated hammerhead cantilever.

Displacement

Load �Z θ (mrad) φ (μrad) Equation Calculated reference values
(5 μN) (nm) Eq. (13) Eq. (13) used (stiffness and compliance)

(FZ )I = 5 μN = (FZ )O 227.50 ± 0.05 1.2380 ± 0.0002 N.A. Eq. (1) (kZ )exact = (21.978 ± 0.005) N m−1

(k−1
Z )exact = (45.50 ± 0.01) mm N−1

Eq. (3′) (kθ )exact = (4.0387 ± 0.0006) mN rad−1

(k−1
θ )exact = (247.60 ± 0.04) rad N−1

( �F)I = (5ŷ + 5ẑ)μN =
(

�F
)

O
227.49 ± 0.05 1.2380 ± 0.0002 162.05 ± 0.08 Eq. (6′), h = 23 μm (kφ)exact = (709.67 ± 0.13) nN m rad−1

(k−1
φ )exact = (1.4091 ± 0.0007) rad (μN m)−1

defined from Eq. (1) using an input load of (FZ)I = 5 μN,
applied to the probe of the cantilever model, with �Z deter-
mined from the point-load displacement. From the same ap-
plied load, Eq. (3′) was used to define (kθ )exact by setting the
output load equal to the input load, (FZ )O = (FZ )I = 5 μN,
and using Eq. (13) to determine θ . By applying a compound
load, ( �F)I = (5ŷ + 5ẑ) μN, to the cantilever probe, and using
Eq. (13) to calculate φ,

(
kφ

)
exact was calculated using

h = 23 μm and by setting (FY )I = (FY )O = 5 μN in Eq. (6′).
From Table II, which lists the calculated reference values and
relevant displacements, note that good agreement between
(FZ)I and ( �F)I (in both θ and �Z ) indicates that flexural de-
flection is independent of torque, as suggested by a linear su-
perposition of the twist and flex deformations.

The calibration parameter reference values in Table II
were used to calculate systematic errors in simulated pivot
calibration parameters, k−1, such that∣∣∣∣�k−1

k−1

∣∣∣∣ = |k−1 − (k−1)exact|
|(k−1)exact| , (14)

Simulated output forces, (F)O , are calculated via the calibra-
tion equations above, where systematic error in a given force
value is calculated by comparing it to a respective input force,
(F)I , such that ∣∣∣∣�F

F

∣∣∣∣ = |(F)O − (F)I |
|(F)I |

. (15)

Results for both Eq. (14) and Eq. (15) are reported as per-
centages in the form (C ± D) %, where C is the simulated
systematic error and D is the numerical error associated with
this error value.

Finally, as beam flexure and torsion theories are linear
(small-deformation) theories, Eqs. (2), (3), (6), and (8) are
only valid for the small-load limit. Systematic error due to
non-linear behavior was investigated with additional mod-
eling (not reported in detail), which revealed that geomet-
ric nonlinearity—including torsional and flexural deformation
coupling—had a negligible effect for all forces and moment
arms of interest here.

4. Localized deformation

In experiment, loads are applied to the hammerhead can-
tilever by pressing the wings against a probe on a ramp chip
or cantilever probe against a surface. In simulation, the effect

of localized loading is depicted in Figs. 10(a) and 10(b) in
which mechanical responses to localized loads are compared
with uniformly distributed statically equivalent loads applied
to the cantilever. Figure 10(a) shows the cantilever deforma-
tion response to a pivot point-load, FZ = 5 μN, applied to the
cantilever with an eccentricity, H = 40 μm (on the left-hand
wing). Figure 10(b) shows the cantilever response to point-
loading, �F = −5y + 5z μN, applied at the probe apex (h
= 23 μm), where FY is directed toward the left of the pic-
ture. Figures 10(a) and 10(b) also show the cantilever de-
formation response to uniform body forces (same resultant)
applied to the cantilever head region (Fig. 9(b)), where a
rotational force, centered around the x-axis, was applied to
give the same couple as the point force. Although the point
force and distributed body forces are statically equivalent, and
therefore cause nearly identical global mechanical responses,
Fig. 10 reveals small differences in the deformation response
for each loading case. In both Figs. 10(a) and 10(b), the orig-
inal undeformed shape of the cantilever is shown as medium
coarse mesh; the outlines represent the displacement response
to distributed body forces, �uuniform, with displacements ex-
aggerated 100 times (i.e., �uoutline = 100 × �uuniform); the over-
laid contoured surface is the z-component of the displacement
difference between the point-load displacement, �upoint, and
displacement due to the uniformly distributed force, �uuniform,
exaggerated an additional 200 times (i.e., �usurface = 100
× {�uuniform + 200 × [�upoint − �uuniform]}).

In Fig. 10(a), where H = 40 μm, the maximum wing
flexure displacement was z ≈ 750 picometers. In the case of
H = 70 μm (not shown), maximum wing flexure was about
z ≈ 2.6 nm. In Fig. 10(b), the maximum head deformation
was about z ≈ 112 picometers, localized in a region that is
offset from the probe in the direction of the lateral load. These
relatively small head deformations turn out to be important
for the analysis of cantilever response in simulations of both
indentation and AFM pivot loading in Secs. IV B–IV C.

B. Indenter simulations

For a series of lever-arm positions, H, across the head
of the cantilever model, 5 μN loads were applied and
displacement, �Z , at the point of force application was
used to determine compliance as a function of H. Anal-
ogous to experiment in Sec. III B, least-squares fitting to
Eq. (10) was then performed for each mesh resolution to
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FIG. 10. (Color online) Hammerhead cantilever subjected to 5 μN loads. (a)
Normal load, FZ , applied at H = 40 μm on the wing. (b) Simultaneous nor-
mal (FZ ) and lateral (FY ) load applied at the probe apex. Both (a) and (b)
show relative mechanical displacement responses of the cantilever model.
The medium meshes are the original undeformed cantilever shapes. The out-
lines represent the displacement response to distributed body forces, �uuniform,
with displacements exaggerated 100 times (�uoutline = 100 × �uuniform). The
overlaid contoured surface is the z-component of the displacement difference
between displacement of a point-load, �upoint, and that due to a uniformly
distributed force, �uuniform, exaggerated an additional 200 times (�usurface
= 100 × {�uuniform + 200 × [�upoint − �uuniform]}).

give stiffness values for kZ and kφ . Finally the best esti-
mate and uncertainty errors were determined using Richard-
son extrapolation (Appendix A). The flexural stiffness deter-
mined from this analysis was kZ = (22.013 ± 0.005) N m−1,
which agreed to within 0.2 % of the (kZ )exact reference
value (Table II). The respective torsional stiffness value
was kφ = (664.5 ± 0.1) nN m rad−1, which compared only
to within 7 % of its reference value (Table II). In con-

trast to the quantification of kZ , the explicit quantification
of kφ is not required for a pivot determination of ST, and
thus for the calibration of LFM lateral friction forces. How-
ever, the relatively large error associated with the simu-
lated indenter kφ value highlights a possible shortcoming
in assumptions underlying the mechanical response of the
cantilever to indentation loading: notably the completeness
of Eq. (10).

The head deformation illustrated in Fig. 10(a) is largely
due to flexure of the “wings” of the hammerhead can-
tilever during �Z (pivot) loading. This is demonstrated in
Appendix B, which describes a modification of Eq. (10) to
include a wing flexure term. Results of this analysis are also
summarized in Table III. For the current hammerhead can-
tilever design, the key findings of the Appendix B simulation
analysis are that the measurement of flexural stiffness at L*
can be determined with errors of < 1 % using multiple in-
strumented indentation measurements across the head of the
hammerhead cantilever (multiple H values at L*), as done ex-
perimentally, without the need to account for wing flexure in
the measurement model. On the other hand, if a torsional stiff-
ness measurement is required, the simulation study predicts
that wing flexure must be accounted for in any model used to
fit indentation force-displacement data if measurement errors
are to be kept to a percent-level or less.

C. AFM pivot simulations

For an optical lever system that is calibrated for LFM
friction measurements via the hammerhead pivot calibration
method, the accuracy of friction measurements are strongly
dependent on the accuracy of the pivot determined torque sen-
sitivity of the optical lever system (ST). This section examines
the potential of the current hammerhead cantilever design to
accurately determine ST, and furthermore, to facilitate an ac-
curate measurement of normal and lateral (friction) surface
forces.

1. Accuracy potential of hammerhead torque
sensitivity calibration

For the hammerhead cantilever design used in this work,
three key aspects of the hammerhead pivot calibration method
were examined with regard to accuracy: (1) The transduc-
tion of force and torque applied to the cantilever via FZ pivot
loading; (2) The determination of torque sensitivity, ST, from
the ratio of cantilever torsional (twist) to flexural (rotation)

TABLE III. Modeled normal and torsional stiffness values for simulated indentation of hammerhead cantilever. See Appendix B for analysis.

Without wing flexure: With wing flexure: With wing flexure:
Eq. (10) or Eq. (B2) Eq. (B2) with

Eq. (B2) with a = 0 with a = 1 afit = 0.84 ± 0.03 Reference value

Flexural stiffness kZ , (N m−1) 22.013 ± 0.005 21.979 ± 0.005 21.985 ± 0.005 21.978 ± 0.005

Fractional error in kZ , |kZ −(kZ )exact|
(kZ )exact

( %) 0.1606 ± 0.0002 0.0056 ± 0.0002 0.0313 ± 0.0002 0

Torsional stiffness, kφ (nN m rad−1) 664.5 ± 0.1 705.0 ± 0.1 697.9 ± 0.2 709.7 ± 0.1

Fractional error in kφ ,
∣∣kφ−(kφ)exact

∣∣
(kφ)exact

( %) 6.37 ± 0.01 0.6563 ± 0.0003 1.65 ± 0.02 0
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responses during pivot loading for a range of torque lever-
arms, H; and (3) The use of ST in quantifying FY lateral
forces applied to the probe. To carry out the pivot calibration
study, input loads of (FZ )I = 5 μN were applied at lever-arm
distances H = (40, 50, 60, and 70) μm, analogous to experi-
ment, and Eq. (13) was used to analyze the cantilever response
in terms of rotation, θ , and twist, φ, of the head.

To address issue (1), flexural rotation, θ , of the cantilever
head was calculated via Eq. (13) for each applied load at
each value of H. Taking the stiffness of the cantilever to be
k−1
θ = (k−1

θ )exact in Eq. (3′), excellent agreement was found
between (FZ)I = 5 μN input values and the calculated (FZ )O

output values for all H, with the largest discrepancy found
for the longest moment lever-arm, H = 70 μm, which had a
relative error of |�FZ/FZ | = (0.09 ± 0.01) % (Eq. (15)). As
force enters into the pivot calibration by way of flexural de-
flection of the cantilever, this small estimated error demon-
strates that the metrology underpinning the pivot calibration
method is sound in terms of the quantification of force and
torque applied to the hammerhead cantilever by pivot load-
ing.

To address issue (2), calculated φ/θ values (Eq. (13))
were plotted as a function of kθ H , as suggested by Eq. (8′),
and setting kθ = (kθ )exact (Table II). The slope of the plot
(not shown) gave (k−1

φ )ST = (1.4425 ± 0.0006) rad (μN m)−1;

where (k−1
φ )ST is denoted with a torque sensitivity (ST) sub-

script to indicate that it was calculated in a way analogous
to the experimental ST (Eq. (8)). The systematic error in
this simulated pivot calibration parameter was determined by
comparison with the reference value for the cantilever tor-
sional compliance, (k−1

φ )exact (Table II) via Eq. (14), which

gave |�(k−1
φ )ST/(k−1

φ )| = (2.369 ± 0.009)%.
In addressing issue (3), just as ST is used to cali-

brate lateral force measurements experimentally, via Eq. (6),
the analogous simulation value, (k−1

φ )ST , was used to cali-
brate lateral force, via Eq. (6′). Listed in Table II, a load
of ( �F)I = (5ŷ + 5ẑ) μN, applied to the probe apex, re-
sulted in head rotations, θ = (1.2380 ± 0.0002) mrad and φ

= (162.05 ± 0.08) μrad. Using the simulated torque sensi-
tivity parameter, (k−1

φ )ST = (1.4425 ± 0.0006) rad (μN m)−1,
calculated above from Eq. (8′), as well as h = 23 μm, and φ

= (162.05 ± 0.08) μrad, the lateral applied load was calcu-
lated from Eq. (6′) to be (FY )O = (4.8843 ± 0.0004) μN,
where systematic error was calculated from Eq. (15) to be

|�FY /FY |=|(FY )O − (FY )I |/|(FY )I |
= ∣∣[[(k−1

φ

)
ST

]/
h
]
φ − (

FY
)

I

∣∣/∣∣(FY
)

I

∣∣
= (2.313 ± 0.008) %.

In summary, the finite element simulation study of ham-
merhead pivot accuracy for the current cantilever design pre-
dicts errors on the order of 2 % to 3 % in the determination
of optical lever torque sensitivity (ST), which carry through to
result in errors of the same magnitude in the measurement of
lateral (friction) forces. A reduction of error in ST will thus
reduce errors in LFM friction force measurement. The fol-
lowing Sec. IV C 2 explores ways to reduce such error by
reducing or avoiding the major contributor to it.

2. Hammerhead head deformation error

The above simulation study demonstrated errors of ap-
proximately 2 % in the determination of a simulated torque
sensitivity pivot calibration parameter, (k−1

φ )ST , and trans-
duced lateral force, FY . The indenter simulation study, out-
lined in Sec. IV B (detailed in Appendix B; Table III), re-
vealed errors on the order of about 6 % in the measurement
of kφ , caused by small deformations in the head of the can-
tilever during loading (i.e., when head deformation was not
accounted for). From Fig. 10(a), the effect of such deforma-
tion is to generate asymmetric wing shapes, sufficient to alter
the average slope of the head, such that the apparent twist an-
gle (φ = ∂z′/∂y) is not a unique function of torque. While
the extent to which such deformation will translate to actual
errors in the AFM optical lever response (for different spot
sizes and shapes) is currently unknown, the simulation tech-
nique that was used to identify small head deformation also
elucidates possible ways to reduce it or avoid errors that could
result from it. Three considerations are discussed: (1) utiliz-
ing St. Venant’s principal in reading the angular response of
the loaded cantilever; (2) better characterization and use of the
relationship between lever-arm length and head deformation
arising from wing flexure; and (3) optimizing future cantilever
design.

In regard to approach (1), the success of beam bending
and torsion theory is attributable in large part to St. Venant’s
principal,15 by which the local effects of forces can be ig-
nored, provided they are analyzed far enough away. The lo-
cal head deformation, discussed previously and illustrated in
Figs. 10(a) and 10(b), suggests that deformations near the
points of force application are important, and consequently
the details of force position matter. One possible approach
to reduce systematic error is therefore to render these local
deformations as “less important” by measuring cantilever ro-
tations closer to the fixed-end base of the cantilever (further
away from the load application region). Fig. 9(b) shows a
(50 × 50)μm2 region marked “neck,” adjacent to the head
region of the cantilever. Using the same forces and analy-
sis as used previously, but analyzing θ and φ by applying
Eq. (13) to the neck region, the estimated systematic method
error for lateral force was |�FY /FY | = (0.33 ± 0.03) %,
compared with (2.313 ± 0.008) % from the same analysis on
the head region. By observing θ and φ rotations in the neck re-
gion, which are caused by strains along the cantilever between
the fixed base and the neck region, the irregular strains closest
to the point loads in the head region do not contribute signif-
icantly to the overall rotations. The theoretical exercise con-
ducted here therefore suggests that experimental force trans-
duction accuracy could be improved if the AFM laser spot is
positioned on the “neck” of the cantilever rather than on the
“head.”

Approach (2) is to reduce wing flexure by using shorter
lever-arms for pivot loading—a reduced lever-arm meaning
a stiffer wing for the same applied load. To investigate this
possibility, individual simulation torque sensitivity val-
ues were found for each value of H, such that (k−1

φ )H

= k−1
θ φ/Hθ , rather than using the slope of Eq. (8′) as done

in Sec. IV C 1. Relative systematic error for each of these
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FIG. 11. (Color online) Systematic error, |�(k−1
φ )H /(k−1

φ )|, in torsional
compliance versus load eccentricity, H.

individual values were calculated as∣∣∣∣∣�(k−1
φ )H

(k−1
φ )

∣∣∣∣∣ =

∣∣∣ (k−1
θ )H

φ

Hθ
− (k−1

φ )exact

∣∣∣
|(k−1

φ )exact|
. (16)

Figure 11 is a plot of |�(k−1
φ )H/(k−1

φ )| vs. H, in which sys-
tematic errors reduce from about 3 % for H = 70 μm to less
than 1 % for lever-arms of H = 30 μm or less. The shaded
area in Fig. 11 indicates H values used in experiments (i.e.,
H = 40 μm to 70 μm).

A possible third approach would be to reduce head defor-
mation by cantilever design. For example, a cantilever with
a head that is thicker (larger z-dimension) than the rest of
the cantilever body would have a larger wing stiffness, which
would reduce wing flexure during pivot loading. In future can-
tilever designs and method development, it would be advis-
able to consider all three of the solutions proposed here.

D. Center of shear

The discussion so far has assumed that the appropriate
origin for determining torque (known as the center of shear15)
is the centroid of the cantilever rectangular cross-section. In
this way, the moment lever-arm, h, can be determined from
the distance from the centroid to the load point. Strictly speak-
ing, this is not the case for lateral loads applied at the probe,
and additional finite element modeling was performed to de-
termine how much of the previously analyzed systematic error
in simulated lateral force calibration could be due to adopting
the simplifying assumption of a non-eccentric center of shear.

The shear center of the cantilever is coincident with the
centroid of the y–z-plane cross-section for most of the can-
tilever’s length (x-values). However, for values of x where
this cross-section cuts through the probe, the y–z-plane cross-
section is not symmetric about the x–y-plane, and both the
centroid and the shear center in these planes shift along the
z-axis and by different amounts. Note that the varying center
of shear means that the resisting torque is not constant along
the entire length of the cantilever. To examine the problem,
a condition of “zero nominal moment arm” was simulated
by applying a force, �F = FY ŷ, with a line of action through
the nominal centroid of the cantilever head, at x = 275 μm,
y = −75 μm and vertical (z) position 3 μm below the top sur-
face (Fig. 9). Under this load, if the nominal centroid and
shear center do not coincide, then the cantilever will twist,

giving an effective weighting of the torque along the entire
cantilever, φs = ∫ T (x)

[G(x)J (x)] dx , where T is torque, G is shear
modulus, and J is the appropriate geometrical factor (sim-
ilar to a polar moment used to analyze torsion of circular
shafts27). In this case, an average eccentricity of the center
of shear along the z-axis, for all x, δh = (kφφs/FY ), can be
defined as the residual moment arm when the nominal mo-
ment arm is zero. Following similar modeling procedures to
those described earlier, and using Richardson extrapolation
(Appendix A), the estimated average eccentricity of the center
of shear was found to be δh = (11.2 ± 0.9) nm. When com-
pared with the value of h = 23 μm, the systematic error is less
than (0.049 ± 0.004) %. This result is not surprising, as the
nominal center of shear coincides with the cross-section cen-
troid of the cantilever for the majority of the cantilever length,
where the majority of twisting takes place (only a small por-
tion of the cantilever length near the probe contributes to the
offset). This error was taken into account implicitly in system-
atic error estimates in Sec. IV C (not listed as an additional
error contribution).

V. DISCUSSION

The microfabricated hammerhead cantilevers presented
here facilitate a practical and straight-forward means to de-
liver precise AFM optical lever system calibrations for can-
tilever flexure (by normal forces) and twist (by friction forces)
that can be carried out in situ in conjunction with force mea-
surements. The study conducted here demonstrated the use
of a hammerhead cantilever under pivot loading to gener-
ate optical lever torque sensitivity (ST) calibrations with sub-
percent relative uncertainties on two different AFM instru-
ments (≈ 0.2 % for Instrument A and ≈ 0.6 % for Instrument
B; see Table I). This is a significant reduction from the sev-
eral percent achieved with pivot calibrations on rectangular
commercial cantilevers, which required an AFM instrument
equipped with closed-loop displacement transducer to con-
trol contact positioning between the cantilever and pivot.14

In the current work, the hammerhead calibration required
only the existing micro-positioning stages and overhead op-
tical camera on the commercially available AFM instruments
used (i.e., H dimensions at L* were determined by hand and
eye). The greatly improved precision in ST determination was
achieved as a consequence of two combined factors: First,
the integrated hammerhead wings enable torque to be applied
to the cantilever with much longer moment arms, which de-
creases the relative uncertainty of lever-arm length determi-
nation (H ), and increases signal-to-noise due to larger torque;
Second, a longer lever-arm enables a larger number of lever-
arm lengths (H) to be utilized (i.e., more space), which allows
for a larger variety of pivot measurements to be used in the
data pool determining the resultant value.

Stiffness values for the experimental cantilever were
measured using an instrumented indenter, which gave kZ

= (16.3 ± 0.1) N m−1 and kφ = (500 ± 18) nN m rad−1. Us-
ing the indenter determined kZ value, AFM pivot data were
also used to measure kφ . Listed in Table I, AFM Instru-
ment A determined a kφ value for the cantilever that was in
agreement to within one standard error with the instrumented
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indenter value, whereas AFM Instrument B exhibited a
smaller kφ that was outside one standard error agreement
with the other two instruments (but within two standard er-
rors). This weaker agreement was attributed to AFM In-
strument B’s smaller sensitivity to cantilever torque (ST

≈ 0.17 V (nN m)−1), which was more than a factor of 30 less
sensitive than AFM Instrument A (ST ≈ 6.1 V (nN m)−1). The
large difference in optical lever sensitivity values observed
for Instrument A compared to Instrument B is not surprising,
since ST and S0

N represent the state of an optical lever system
for a given type of instrument and a given experimental setup.
As these parameters tend to vary from one experimental setup
to the next for any given instrument (for example, due to the
specific cantilever used and the way it is mounted in the in-
strument), they are expected to vary quite significantly from
one instrument design to the next (e.g., due to different laser
sources, detector types, gains and filtering, and so on).

Crosstalk in an optical lever system can be observed
directly from a pivot calibration plot, where the degree of
crosstalk is observed from the intercept, (�VL/�VN)H=0, at
the zero-torque position, H = 0. In the calibration experi-
ments reported in Fig. 7, optical crosstalk was observed to be
(�VL/�VN)H=0 = −0.023 and (�VL/�VN)H=0 = −0.008
for Instrument A and Instrument B systems, respectively. As
optical misalignment is a typical condition in LFM-type opti-
cal lever systems, this suggests that Eq. (8) should be modified
to include an intercept term and a perhaps a slope correction
for any effect that crosstalk may have on ST. The impact of
crosstalk on ST pivot calibration data was analyzed in Ap-
pendix C, which found that crosstalk reduces the linearity of
the optical lever response (required by Eq. (8) to determine
ST), while increasing uncertainty in the determination of ST.
However, for a system with an optical misalignment of mag-
nitude typically encountered and practically reasonable, the
effect of crosstalk turns out to be very small: the non-linear
contribution is negligible and the additional uncertainty in ST

is on the order of 0.01 % to 1 % for crosstalk on the order of
0 < |(�VL/�VN)H=0| <∼ 10 %. Systems with crosstalk larger
than 10 % were not studied.

Two additional, related, factors suggest that optical mis-
alignment will have a minimal effect on a pivot ST calibra-
tion: First, the output ratio, �VL/�VN, accounts for the opti-
cal system response in both dimensions of the quad-cell PSD
(Eq. (8));12 Second, zero-torque measurements (H = 0) are
acquired in situ with multiple torque measurements (H �= 0)
in the same calibration sequence.13 Although a ST calibra-
tion determines the optical lever system response to cantilever
torque, the essential measurement in the calibration is the
zero-torque measurement, which provides the normal sensi-
tivity of the optical lever system, S0

N. In combination with kZ ,
S0

N provides a measurement of (normal) force, which facil-
itates a measurement of torque, via H. Note that a S0

N cal-
ibration is typically made without consideration of optical
crosstalk, since the specific optical path traversed by the laser
beam from the cantilever defines the optical lever response
to pure flexure in the cantilever (in the absence of mechan-
ical crosstalk). From this standpoint, since both dimensions
of the quad-cell detector are accounted for in the optical re-
sponse (�VL/�VN), and zero-torque measurements (H = 0)

are associated with multiple cantilever torque measurements
(H �= 0), the ST calibration is seemingly insensitive to optical
misalignment (provided that the linearity of the resultant opti-
cal response is unaffected, which, from analysis in Appendix
C, turns out to be the case). Notwithstanding, experimental
measurements should always be made within the linear re-
sponse range of the PSD and multiple lever-arm (H) measure-
ments should be made in conjunction with zero-torque mea-
surements (H = 0), since the use of only a single lever-arm
(torque) measurement, without incorporation of a zero-torque
measurement in situ in the calibration,12 can lead to large sys-
tematic errors, because the contribution of crosstalk to the cal-
ibration cannot be adequately known.

The effect of crosstalk on the uncertainty of a pivot tor-
sional stiffness (kφ) measurement can be observed directly
from the kφ pivot calibration plot, as shown in Figs. 8(a) and
8(b), where the optical response to cantilever torsion “splits”
with magnitude and direction of cantilever twist. The source
of the systematic error is revealed in Eq. (12), in which the
lateral portion of the optical response is ignored in the calcu-
lation, meaning that alignment of the optical lever system is
not taken into account. The misalignment is illustrated con-
ceptually in Fig. 8(c). The effect of optical crosstalk on pivot
kφ measurements was analyzed in Appendix C, along with a
numerical study demonstrating that the split optical response,
caused by crosstalk, can be used to determine kφ with a high
degree of precision by performing a linear fit to all data—
to obtain an “averaged” kφ—as was done for the Fig. 8 data
(Sec. III C).

The experimental work discussed in this paper demon-
strated sub-percent statistical uncertainties for the determina-
tion of optical lever ST values generated by the hammerhead
pivot method. This high level of precision motivated a quan-
titative analysis of the accuracy potential of the technique,
carried out here using the finite element method. For the ex-
perimental cantilever design used in this work, the simula-
tion study produced three main findings. (1) At a distance L*
from the cantilever fixed end, where the cantilever flexural
stiffness is kZ , a z-directed load, FZ , can be measured from
the flexural deflection of the cantilever, regardless of whether
the cantilever is loaded at a position that is coincident with the
cantilever center of shear (H = 0), or whether FZ is applied
off-axis from the center of shear by a distance H (in the y-
direction), with errors predicted to be less than 0.1 % for load
positions extending −70 μm ≤ H ≤ +70 μm from the center
of the cantilever head. (2) Head deformation was predicted
to cause errors of ≈ 6 % in the determination of cantilever
torsional stiffness by instrumented indentation measurements
(analysis in Appendix B). (3) Head deformation during AFM
pivot loading was predicted to cause errors on the order of
≈2 % in the determination of optical lever torque sensitiv-
ity (ST), which carry through to result in errors of the same
magnitude in the measurement of lateral (friction) forces.
Findings (1) and (3) have a direct impact on the accurate
quantification of LFM friction forces via the pivot calibra-
tion method. With regard to finding (1), as force makes its
way into the pivot calibration by way of flexural deflection of
the cantilever, this small estimated error demonstrates that the
metrology underpinning the pivot calibration method is sound

Downloaded 27 Sep 2011 to 152.1.24.251. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



093706-18 Reitsma et al. Rev. Sci. Instrum. 82, 093706 (2011)

in terms of the quantification of force and torque applied to a
hammerhead cantilever via pivot (FZ ) loading. With regard to
finding (3), the simulation study found that torque sensitiv-
ity errors were largely the result of deformation in the head of
the hammerhead cantilever during pivot loading, despite it be-
ing unclear as to what degree such small deformations might
produce actual experimental systematic errors in the AFM
optical response (for different spot sizes and optical geome-
tries). In any case, three possible methods to reduce or avoid
the potential error source were proposed. The first suggestion
was based on St. Venant’s principal, such that reduced error
could theoretically be obtained if optical detection were per-
formed at some distance away from the applied load—on the
“neck” rather than the “head” of the cantilever—albeit at the
expense of optical lever sensitivity. A second analysis demon-
strated that a significant reduction in error could be achieved
via reduction in the length of the H lever-arm set used for the
calibration (Fig. 11), albeit at the expense of greater relative
uncertainty in H. A third possibility would be to fabricate a
cantilever with a head that is somewhat thicker (and thence
stiffer) than the rest of the cantilever, which would minimize
head flexure in future cantilever designs. These possibilities
were proposed because a reduction from say (2 to 3)% to
(1 to 2)% or less is worth pursuing, as this type of error is
not the only one that requires consideration. From Eq. (8),
sub-percent uncertainties in both kZ and S0

N determinations
are achievable,4 and uncertainties in H can be maintained at
the percent-level, although such values will depend largely on
the equipment and user performing the calibration.

In measuring friction via LFM and calibrating the optical
lever system for such measurements, via Eq. (6), three major
sources of uncertainty in the measurement of friction force,
FY , are apparent. One source of uncertainty, via Eq. (6), will
arise from the way in which the lateral deflection, �VL, is
calculated from friction-loop data, which will depend on the
way in which experiments are conducted and how data are
processed; for example, whether the lateral deflection “noise”
in the dynamic (sliding) portions of friction-loop data (see
Fig. 1(a)) is considered unimportant and thence averaged
out, or whether it is the subject of a stick-slip friction in-
vestigation. A second source of uncertainty, via Eq. (6), is
in the determination of the probe lever-arm length, h. Fi-
nite element modeling conducted here has revealed negligible
displacement of the cantilever shear center for practically ap-
plicable lateral loads imposed on the hammerhead cantilever.
In this case, the probe lever-arm, h, extends from the shear
center of the cantilever to the point of contact between the
probe and surface. For LFM measurements of friction using
hammerhead cantilevers, fitted with integrated tips or col-
loidal probes, the largest source of uncertainty is likely to
be in the length determination of the probe lever-arm, h,
which requires the summation of two dimensional measure-
ments that are made separately (ex situ) to all other measure-
ments: (1) the half-thickness of the cantilever directly above
the probe, and (2) the probe length, from its apex to the point
at which it is connected to the cantilever. The third source
of uncertainty, via Eq. (6), is in the determination of the op-
tical lever torque sensitivity parameter itself, ST, for which
this paper has demonstrated precise determinations by way

of sub-percent statistical uncertainties. Currently, a significant
contribution to ST uncertainty comes from uncertainty in the
determination of H. To a large extent, improved H measure-
ments will come with improved fiducial markings and other
features on a ramp chip that will allow better positioning,
alignment and contact between the cantilever and ramp chip
during pivot loading. Notwithstanding, an accurate determi-
nation of ST, by Eq. (8), is achievable by way of a detailed
characterization of the optical detection system for �VN and
�VL and associated traceable determination of S0

N and of H
and kZ . These measurements will be carried out as part of
standardization in future work.

The central focus of this paper has been on the calibration
of AFM optical lever systems for the quantification of LFM
friction-loop data using hammerhead cantilevers and the LFM
pivot calibration method. There are, however, a number of
other issues for the LFM experimentalist to consider in quan-
tifying friction data, and although these issues fall outside the
scope of the current paper, they warrant mention as consider-
ations for experimental diligence (as well as focus topics for
future work). One issue is the effect of optical lever system
crosstalk on friction-loop measurements. The principal con-
sequence of crosstalk is a convolution of normal and lateral
PSD output as the cantilever deflects. During an LFM fric-
tion experiment, usual practice is to maintain a constant ap-
plied normal load during sliding. To do this, the experimental-
ist typically operates an instrument-controlled feedback loop
that works by maintaining a constant pre-selected normal out-
put (VN*), often called the “setpoint.” The imposed setpoint
complicates the interpretation of normal load when optical
crosstalk is present, since a change in lateral output (as the
cantilever twists) will produce a change in normal output, VN,
which in turn will cause the active feedback loop to adjust the
apparent load dynamically from one sliding (twisting) direc-
tion to the other. The implication is that the actual load, FZ ,
will be changed rather than maintained, and that this change
will be a function of the direction and magnitude of lateral
deflection (cantilever twist). In addition, the torque applied
to the cantilever will also be influenced by the load adjust-
ment, according to the specific friction-load relationship be-
tween the probe and surface. In most cases, these effects are
likely to be small, but not necessarily negligible. Also in re-
gard to the interpretation and control of applied normal load,
the angle at which an AFM cantilever is mounted in the in-
strument poses several issues for the LFM experimentalist,
including: (1) the appropriate vector correction for the inter-
pretation of normal force requires knowledge of the cantilever
and probe angles relative to the experimental surface8 (this ad-
justment is typically on the order of a few percent; for simplic-
ity, such corrections were not made or included in equations
in this paper). (2) For determination of optical lever normal
sensitivity, attention should be paid to the interpretation of
force-displacement ramp data, which is sometimes subject to
hysteresis between approach and retract compliance slopes7

(approach-retract hysteresis was statistically insignificant for
all data observed in this work). (3) For both normal and lat-
eral force measurements, it should be kept in mind that, as
normal applied load is adjusted, the probe will displace ax-
ially (x-direction) on the surface.28 In pursuit of accuracy in
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LFM friction measurements, such issues should be addressed
in future work.

The hammerhead cantilever design used in this paper has
demonstrated a straightforward means of performing a pre-
cise optical lever torque sensitivity (ST) calibration for LFM
friction data. Finite element analysis of the cantilever has in-
dicated that the pivot calibration method provides an accurate
representation of cantilever mechanics, in which force and
torque applied to the cantilever during pivot loading can be
used to interpret force and torque applied to the cantilever
during lateral (friction) loading, with an uncertainty on the
order of about 2%, reducible via refinement of calibration
methodology or cantilever design. The prospect offered by
hammerhead-type cantilever designs and the associated pivot
calibration method is that accurate LFM friction measure-
ments could one day be made with a total uncertainty budget
less than 5%.
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APPENDIX A: FURTHER DETAILS OF HAMMERHEAD
CANTILEVER FINITE ELEMENT MODELING
AND CALCULATIONS

Numerical modeling of the cantilever elastic response
was performed using a commercially available finite element
analysis software package. Three identical cantilever models
were created, each consisting of standard 10-node quadratic
tetrahedrons, and differing only in the density of elements.
Using a free-meshing algorithm, the element linear dimen-
sions for coarse, medium and fine meshes were set nominally
to 12.5 μm, 6.25 μm, and 3.125 μm, respectively. To ensure
doubling of the linear element density in the z-direction, the
three cantilever meshes were manually divided into 2, 4, and 8
x-y-oriented slabs, respectively, for each mesh. The resulting
numbers of elements for each mesh were about 1850 (coarse),
14 400 (medium) and 111 000 (fine) with slight variations de-
pending on the force position.

All quantities were calculated using n-point polyno-
mial Richardson extrapolation with assumed error of the
form σ (d) = ∑n+1

i=2 ai di , where d parameterizes the mesh
coarseness: d = 1 (coarse), d = 1/2 (doubled once), d
= 1/4 (doubled again) and ai are fit to the numerical data.26

Reported numerical errors in scalar outputs were estimated
as the difference between the n = 3 Richardson extrapolation
using all three meshes, and n = 2 Richardson extrapolation
using the two coarser meshes. All mathematical operations
such as algebra, numerical integration and regression anal-
yses were performed prior to extrapolation, rather than per-
forming algebra on extrapolated quantities (so that it was not
necessary to guess the correlation of various errors; construc-
tive error compounding or cancellation was taken into account

naturally via the extrapolation procedure and subsequent er-
ror estimation). As an example, the simulated pivot method
calibration of ST (Sec. IV C) had a number of intermediate
quantities, such as kθ , φ and θ . The full ST simulation pro-
cedure was performed for each mesh resolution, resulting in
three distinct estimates of ST. Richardson extrapolation was
then performed on the sequence of three ST values to yield
the best estimator and its associated numerical error.

All loads applied to cantilever models were point forces
of magnitude, 5 μN. The point force approximation is conve-
nient, but it potentially gives rise to mathematical singulari-
ties when meshes are refined to a very high degree. The re-
sulting finite element models were thus semi-convergent with
respect to element size. The element sizes (larger than 1 μm)
were larger than a typical contact radius (<100 nm), and thus
tended to underestimate the true contact compliance that was
already known to be negligible (Sec. III B). The small es-
timated numerical errors demonstrated that the models were
at the intermediate optimum scale at which point force di-
vergences were appropriately cut off, but other contributions
to calculated quantities were obtained to great numerical
accuracy.

The finite element software flagged many elements as be-
ing highly distorted as they were “pancaked” in the plane of
the cantilever. This distortion kept the problem numerically
tractable; however, each refinement of the mesh included dou-
bling the density in all three dimensions, and the resulting
satisfactory numerical error estimates justified ad hoc the de-
cision to ignore these warnings.

Numerical boundary integrals given in Eq. (13) were per-
formed using 1D quadratic elements that were commensurate
with the edges of 3D tetrahedral elements.

APPENDIX B: INDENTATION SIMULATIONS
OF HAMMERHEAD CANTILEVER

Finite element simulations, analogous to instrumented
indentation experiments (in Sec. III B), were performed
using a larger number and range of moment lever-arms
than experiment, extending in 5 μm increments from H
= 15 μm to 70 μm across a wing (H = y in Fig. 12). Dis-
placement (in the z-direction) at the point of force applica-
tion was used to determine compliance as a function of H.
Analogous to experiment (Sec. III B), least-squares fitting to
Eq. (10) was then performed for each mesh resolution to give
stiffness values for kZ and kφ . Finally the best estimate and
uncertainty errors were determined using Richardson extrap-
olation (Appendix A). The results are reported in Table III,
where cantilever flexural stiffness, kZ , via Eq. (10), was in
agreement with its reference value (Table II) to within 0.2%;
whereas the kφ value, via Eq. (10), compared only to within
7 % of its reference value. In contrast to the quantification
of kZ , the explicit quantification of kφ is not required for a
pivot determination of ST and the calibration of LFM lateral
friction forces. However, the relatively large error associated
with the simulated indenter determined kφ value highlights
a possible shortcoming in assumptions underlying the can-
tilever mechanical response to indentation loading; notably
the completeness of Eq. (10).
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FIG. 12. Beam-bounce (top) side of hammerhead cantilever model.

The head deformation illustrated in Fig. 10(a) is largely
due to flexure of the “wings” of the hammerhead cantilever
during �Z (pivot) loading. This will be demonstrated in the
following exercise, which aims to modify Eq. (10) to include
a wing flexure term. The wing flexure deformation mode was
approximated as a plane-strain beam running along the y-
direction of the head. Referring to Fig. 12, head flexure is
assumed to be qualitatively similar to the flexure of a uniform
beam extending from y = −75 μm to y = +75 μm, which
is pinned at y = −25 μm and y = +25 μm. The attachment
of the head to the rest of the cantilever at x = 250 μm is
rather complicated to describe analytically, as the cantilever
must satisfy both mechanical equilibrium and compatibility
along the extent of the attachment from y = −25 μm to y
= +25 μm. To simplify the analysis, the attachment (between
the head and cantilever) was approximated as two fixed pin
supports located at the extremes of the attachment (described
below). The cantilever head flexure compliance (k H

w )−1 was
calculated as the vertical displacement (w) per unit force at
the point of loading (y = H ) and added to the compliance
terms in Eq. (10) to result in a more complete expression. In
the following, the total compliance expression is formed by
first deriving the wing compliance term, in Appendix B 1,
and the appropriate elongation modulus, E, for bending of the
cantilever neck and head, in Appendix B 2, before incorpora-
tion into the final expression, called the double-pin supported
beam compliance, in Appendix B 3.

1. Wing compliance term

While deriving the compliance formula, beam dimen-
sions are given symbolically (i.e., as variables). The y extents
of the beam are y = ±l, with l = 75 μm. The pin supports
are located at y = ±Ha with Ha = 25 μm. The symbol Ha is
chosen in anticipation of the final result, Eqs. (B1) and (B2)
below. Additional model inputs are the effective elongation

modulus (E) and the cross-sectional areal moment (I ). The
beam cross-section is approximated as uniform and only takes
into account the rectangular portion of the head; that is, the
effects of the probe geometry on the areal moment (I ) and
resisting moment (M) are neglected.

Consider a beam extending from y = −l to y = l with
two pin supports at y = −Ha and y = +Ha . If the beam is
loaded with an upward transverse force Fz at y = H , its com-
pliance is the elastic curve displacement at y = H per unit
force,

(
k H

w

)−1 = w (H ) /Fz . Applying Euler-Bernouli beam
theory and using singularity functions, 〈. . .〉n , the resisting
shear force (V ) and bending moment (M) are:

V (y) = RA〈y + Ha〉0 + RB〈y − Ha〉0 + FZ 〈y − H〉0,

M(y) = RA〈y + Ha〉1 + RB〈y − Ha〉1 + FZ 〈y − H〉1,

where RA and RB are the mechanical constraint forces at
−Ha and +Ha , respectively, and 〈x〉n = (x)n when x > 0,
and 〈x〉n = 0 when x ≤ 0.27 Mechanical equilibrium requires
that the resisting shear force and moment each equal zero at
the maximum y-coordinate of the beam (y = l) as there are
no applied or constraint forces or couples there; and thus,

V (l) = RA〈l + Ha〉0 + RB〈l − Ha〉0 + FZ 〈l − H〉0

= RA + RB + FZ = 0.

M (l) = RA〈l + Ha〉1 + RB〈l − Ha〉1 + FZ 〈l − H〉1

= (RA + RB + FZ ) l + RA Ha − RB Ha − FZ H

= RA Ha − RB Ha − FZ H = 0,

using the fact that the coefficient of l is simply the total resist-
ing shear force (V (l) = 0). Solving for the reaction forces,

RA = H − Ha

2Ha
FZ ; RB = − H + Ha

2Ha
FZ .

Performing double integration on the resisting moment
(M), w(y) = (E I )−1(∫ dy)2 M(y). Applying the constraints,
w(−Ha) = w(Ha) = 0,

w(y) = Fz

12E I Ha

[
(H − Ha)〈y + Ha〉3 − (H + Ha)〈y − Ha〉3

+ 2Ha〈y − H〉3 − (Ha − y)〈−(Ha + H )〉3 − (Ha + y)

×〈Ha − H〉3 + 4H 2
a (Ha − H )(Ha + y)

]
.

Noting that by symmetry k H
w = k|H |

w , and considering the two
cases |H | ≤ Ha and |H | > Ha ,

(
k H

w

)−1 = w (H )

Fz

= 1

6E I

{(
H 2 − H 2

a

)2
/Ha ; |H | ≤ Ha

2 (|H | − Ha)2 (|H | + Ha) ; |H | > Ha

.

(B1)

This wing compliance term is added to the cantilever flexural
and torsional compliances (Eq. (10)) to obtain the double-pin
supported beam compliance expression in Appendix B 3 be-
low. Preceding this, the value of the effective Young modulus,
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E , to be used in the final expression, is calculated in Appendix
B 2 below.

2. Elongation modulus

The appropriate elongation modulus E for bending of the
cantilever neck and head is calculated as follows. Under flex-
ure, in the x(y)-direction, i.e., bending about the y(x)-axis, the
head is in an approximate state of plane-strain in the x-z(y-
z)-plane which is a {110} plane. Flexure elongates material
fibers in the x(y)-direction, a 〈110〉 direction. The effective
elongation modulus is thus designated E{110}〈110〉. To calculate
this modulus, the cubic elastic stiffness tensor was rotated 45◦

about the z-axis, a 〈100〉 direction. Then, the shear strains, the
normal strain in the y(x)-direction, and the normal stress in the
z-direction, were set to zero. Solving for the resulting ratio of
stress to strain in the x(y)-direction, the required modulus was
obtained:

E{110}〈110〉 = (
c2

11 + c11c12 − 2c2
12 + 2c11c44

)/
(2c11),

and in the case of silicon, E{110}〈110〉 = 169.8 GPa.

3. Double-pin supported beam compliance model

Incorporation of the appropriate effective Young modulus
(calculated above) into Eq. (B1) above and adding this com-
pliance expression to Eq. (10) results in a total compliance of

(k tot
Z )−1 = k−1

Z + (kφ)−1 H 2 + a
1

6E{110}〈110〉 I

×
{(

H 2 − H 2
a

)2
/Ha ; |H | ≤ Ha

2 (|H | − Ha)2 (|H | + Ha) |H | > Ha

, (B2)

where Ha = 25 μm, E{110}〈110〉 = 169.8 GPa; I is the bending
moment of inertia (= (1/12)(50 μm) (6 μm)3 = 900 μm4);
and a is introduced as an artificial parameter. Theoretically,
a = 1, but a can also be used as an additional fit parameter
to adjust for the approximation of describing the head as a
simple beam with simple supports, or perhaps for any uncer-
tainty in the areal moment, I . Setting a = 0 recovers Eq. (10).
Fig. 13 shows the simple beam model, loaded at H
= 40 μm, exhibiting a mechanical deformation that is qualita-
tively similar to the displacement difference, �upoint − �uuniform,
in Fig. 10(a). Note that in both cases, the head responds to a
pivot load such that the opposite wing pitches up as the other
is loaded, forming a slight trough in the center of the head.
The appropriate boundary conditions are zero-displacement
at y = ±25 μm, since Eq. (10) already accounts for compli-
ance due to rotation about the x-axis (φ) and the y-axis (θ ).

The results of using Eq. (B2) to fit the simulated in-
dentation loading data are compared to those of Eq. (10) in
Table III, benchmarked against reference values (kZ )exact and(
kφ

)
exact (Table II). From Table III, the determination of

cantilever flexural stiffness, kZ , via simulated indentation
is well approximated by all expressions, with values com-
paring to (kZ )exact to within: 0.2 % when wing flexure is
neglected (i.e., Eq. (10), or Eq. (B2) with a = 0); 0.01 %
for Eq. (B2), with a = 1; and 0.04 % for Eq. (B2), with

FIG. 13. (Color online) Plot of the double-pin supported beam model (arbi-
trary z scale), used to account for head deformation in indentation loading.

a used as a fit parameter. For the determination of can-
tilever torsional stiffness, however, when wing flexure is
neglected (a = 0 or Eq. (10)), kφ compared to its refer-
ence value ((kφ)exact) only to within 7 %, whereas estimated
bounds of <1 % and <2 % were obtained using Eq. (B2) for
cases where a = 1 and where a was used as fit parameter,
respectively.

From these results it is clear that for the hammerhead
cantilever design used in this study, the measurement of flex-
ural stiffness at L* can be determined using multiple instru-
mented indentation measurements across the head of the ham-
merhead cantilever, with errors of <1 %, without the need to
account for wing flexure in the measurement model. On the
other hand, if a torsional stiffness measurement is required,
wing flexure must be accounted for in any model used to fit
indentation force-displacement data in order for measurement
errors to be < 1 %.

APPENDIX C: EFFECT OF OPTICAL LEVER SYSTEM
CROSSTALK ON THE PIVOT CALIBRATION METHOD

Optical misalignment is caused by misalignment between
the cantilever reflective (beam bounce) surface and the sec-
tor axis of the PSD. This condition complicates the interpre-
tation of forces acting on the cantilever, since normal and
lateral output signals from the PSD are convoluted, creating
a “crosstalk.” The following describes an analysis of PSD
crosstalk and its effect on the pivot LFM calibration method.
To simulate crosstalk, an optical lever system model is in-
troduced in Appendix C 1, such that both normal and lat-
eral channels contain both normal and lateral contributions.
This model is used to study the effect of crosstalk on the
pivot method for the determination of torque sensitivity in
Appendix C 2, and on the determination of cantilever tor-
sional stiffness in Appendix C 3.

1. Optical lever system model

To describe an optical lever system in which cross-talk
causes both normal and lateral channels to respond to a given
input, the following model is written in terms of normal force
FZ and torque T on the cantilever, by modifying Eq. (7), such
that

�VN = S0
Nk−1

Z FZ + SNTT, (C1a)

�VL = STT + STNk−1
Z FZ , (C1b)

where kZ is the flexural stiffness of the cantilever and FZ

is the normal force applied to it (Eq. (1)), S0
N is the normal
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displacement sensitivity (Eq. (2)) and ST is the torque sensi-
tivity (Eq. (5)) of the optical lever system. The system has two
crosstalk terms: SNT is a coefficient with units of V (N m)−1

that characterizes how cantilever torque alters the normal
output, and STN is a coefficient with units of V m−1 that char-
acterizes how cantilever normal force alters the lateral output.
Note that Eqs. (C1) are valid when the PSD responds pro-
portionately to the normal force and torque, and represents a
general description of cross-talk, regardless of the source (e.g.
optical, mechanical).

2. Torque sensitivity calibration

The key calibration equation in this paper—Eq. (8)—
describes a means to obtain a ST calibration of the opti-
cal lever system, generated by the system output response,
(�VL/�VN), to cantilever torque via various lever-arms, H.
Accepting that a LFM optical lever system is almost always
subject to misalignment, then Eq. (8) should be regarded as a
simplification of a more general form. Upon some rearranging
of Eq. (C1), the output ratio can be expressed as

�VL

�VN
=

H
(

kZ

S0
N

)
ST + STN

S0
N

1 + H
(

kZ

S0
N

)
SNT

. (C2)

Expanding Eq. (C2) in powers of
(

kZ

S0
N

)
,

�VL

�VN
= STN

S0
N

+
(

ST − STNSNT

S0
N

) (
kZ

S0
N

H

)

− SNT

(
ST − STNSNT

S0
N

)(
kZ

S0
N

H

)2

+ · · · (C3)

It is clear that the output ratio deviates from linearity by a
term proportional to SNT(ST − STN SNT

S0
N

). It turns out that this

number is very small compared to other terms in Eq. (C3). In-
deed, inspection of the ST calibration plots in Fig. 7 shows that
the �VL

�VN
vs. H ( kZ

S0
N

) relationship was very linear in the case of

both instruments studied. In fact, based on the data presented
in this paper, as well as other data obtained from a number
of other ST calibration experiments conducted using differ-
ent hammerhead cantilevers and AFM instruments (data not
reported here), the Pearson Correlation for a ST calibration
plot is typically observed to be R2 = 0.99 or better. Consid-
ering this and turning attention to the linear term in Eq. (C3),
there is a clear difference from Eq. (8) by a term referred to
here as the “cross-talk error”: �STcrosstalk = − STN SNT

S0
N

. This er-

ror contains the product STNSNT and is second order in cross-
talk (so that if the relative effect of crosstalk on individual
PSD output is small, the crosstalk error will be smaller still).
Using experimental data and the equations provided above,
a simple calculation demonstrates that �STcrosstalk is typically
very small compared to ST (<1 %), thereby justifying rig-
orously Eq. (8)—albeit modified by non-zero intercept term
(STN/S0

N), which has no effect on the quantification of LFM
friction data. The following outlines a numerical analysis that
further compares the magnitude of �STcrosstalk with ST.

FIG. 14. (Color online) Pivot torque sensitivity output data comparison be-
tween Instrument A data and linear response models.

a. Numerical analysis

Figure 14 shows a comparison of three types of linear
fits for a torque sensitivity (ST) measurement, based on the
“Instrument A” experimental data (Fig. 7; Sec. III; note
that the normal sensitivity value, S0

N = 1.34 × 107 V m−1,
was determined experimentally; Table I). The cross marks
show the instrument generated data, from which a linear fit
gave a slope of ST = 6.14 × 109 V (N m)−1 (Table I). The
dashed line represents a fit of Eq. (C2) to �VL

�VN
vs. ( kZ

S0
N

H ),

using ST, SNT and STN as fit parameters, which gave ST

= 6.12 × 109 V (N m)−1, SNT = 1.75 × 108 V (N m)−1 and
STN = −2.67 × 105 V m−1. The solid line represents a fit
of ‘linearized’ Eq. (C2), where SNT → 0 (i.e., Eq. (8)
with a non-zero intercept, STN/S0

N), which gave ST

= 6.13 × 109 V (N m)−1 and STN = −3.21 × 105 V m−1. All
fits are very linear (with adjusted R2 values of at least 0.99)
and all ST values compare to within 0.5 %. Optical crosstalk
in the instrument A system was (�VL/�VN)H=0 = STN/S0

N
= −0.023. The same numerical exercise has also been
conducted for other optical lever system data, but with much
larger crosstalk values—on the order of (�VL/�VN)H=0
= 0.1 (data not reported here)—and even for these systems,
the torque sensitivity data showed extremely good linearity,
with crosstalk errors (�STcrosstalk ) that were <1 % of ST.

3. Cantilever torsional stiffness measurement

In the pivot method, kφ is inferred to be the multiplica-
tive inverse of the slope of (S0

N/SH
N ) − 1 vs. kZ H 2 (Eq. (12)).

Analysis of data in Fig. 8 assumed that the effects of the cross-
talk could be removed by using the average of SH

N values for
both H > 0 and H < 0. Analogous to the formulation of Eq.
(12), but introducing crosstalk terms into the analysis, Eqs.
(C1a) and Eqs. (9) and (10), (11a) combine with T = H FZ to
give

S0
N

SH
N

− 1 = S0
N(kZ H 2) − kφkZ SNT H

kφ

(
S0

N + kZ SNT H
) . (C4)

If one then assumes that SNT → 0, Eq. (12) is recovered; how-
ever if SNT �= 0, Eq. (C4) differs from Eq. (12) and is not
linear in kZ H 2. From inspection of Fig. 8, the method of
averaging the H > 0 and H < 0 responses to remove
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FIG. 15. (Color online) Pivot torsional stiffness measurement simulated us-
ing the linear response model, showing H > 0, H < 0, and average modeled
linear responses.

crosstalk effects appears to be valid, but it is worthwhile to
check if such an approach is consistent with the linear re-
sponse model. Using H = ± |H | and taking the average,

S0
N

S|H|
N

− 1 = 1

2

[(
S0

N

S+|H|
N

− 1

)
+

(
S0

N

S−|H|
N

− 1

)]

=
1 + kφkZ S2

NT

S02
N

1 − kZ S2
NT

S02
N

(kZ H 2)

1

kφ

(kZ H 2). (C5)

Expanding in powers of (kZ H 2),

S0
N

SH
N

− 1 =
(

1

kφ

+ kZ S2
NT

S02

N

)
(kZ H 2) + kZ S2

NT

S02

N

×
[

1

kφ

+ kZ S2
NT

S02

N

]
(kZ H 2)2 + · · · . (C6)

Note, that the coefficient of kZ H 2 differs from 1/kφ , creat-

ing an error: �(k−1
φ )crosstalk = kZ S2

NT

S02
N

. If this term is small com-

pared to 1/kφ one can see that the nonlinear term is similarly
small, and Eq. (12) is a reasonable approximation.

a. Numerical analysis

From the Instrument A data, Eq. (C4) was used
to simulate the instrument response using S0

N = 1.34
× 107 V m−1, ST = 6.14 × 109 V (N m)−1, kZ = 16.3 N m−1,
and kφ = 5.03 × 10−7 N m rad−1 (Table I), and SNT = 1.75

× 108 V (N m)−1, STN = −2.67 × 105 V m−1. A plot of S0
N

SH
N

− 1 vs. kZ H 2 is shown in Fig. 15, which gives the same
form that was observed in Fig. 8. The data in Fig. 8 do
not include data near H = 0 and the plot appears linear (for
small H, however, the simulation reveals that the response
is more like a distorted, tilted parabola). Averaging the re-
sponse for positive and negative H appears very linear; thus,
the nonlinearity in Eq. (C5) can be reasonably neglected.

Numerically, the resulting inverse slope was kφ = 5.02
× 10−7 N m rad−1, which compared with the input value of kφ

= 5.03 × 10−7 N m rad−1, gives a systematic error of 0.2 %.
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