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Abstract
A clear relationship between the population of brittle-fracture controlling flaws generated in a manufactured material and the
distribution of strengths in a group of selected components is established. Assumptions regarding the strength-flaw size rela-
tionship, the volume of the components, and the number in the group, are clarified and the contracting effects of component
volume and truncating effects of group number on component strength empirical distribution functions highlighted. A simple
analytical example is used to demonstrate the forward prediction of population → distribution and the more important reverse
procedure of empirical strength distribution → underlying flaw population. Three experimental examples are given of the
application of the relationships to state-of-the-art micro- and nano-scale strength distributions to experimentally determine flaw
populations: two on etched microelectromechanical systems (MEMS) structures and one on native and oxidized silicon nano-
wires. In all examples, the minimum threshold strength and conjugate maximum flaw size are very well estimated and the
complete flaw population, including the minimum flaw size, are very poorly estimated, although etching, bimodal, and oxidation
effects were clearly discernible. The results suggest that the best use of strength distribution information for MEMS manufac-
turers and designers might be in estimation of the strength threshold.
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Introduction

Manufacturing processes typically produce large numbers of
components that comprise the entire volume of manufactured
material. For components that are intended to be primarily
structural (i.e., load bearing) attention focuses on the popula-
tion of strength-limiting defects or flaws generated by a par-
ticular manufacturing process and distributed throughout the
material volume. Such flaws control the strength of the mate-
rial local to the flaw and manufacturing processes for struc-
tural components are optimized tomaximize the strength (sub-
ject to constraints of cost, timeliness, aesthetics, etc. [1]).
Under usual circumstances, the flaws are much smaller than
the volume of manufactured material and the components,

e.g., fragmentation cracks in glazed pottery, grinding striations
in machined material, grain-boundary grooves in etched
microelectromechanical systems (MEMS), and atomic-scale
defects in vapor-phase grown nanostructures (although there
are exceptions, e.g., the macroscopic crack in the Liberty Bell
casting). A component formed from the manufactured mate-
rial will thus likely contain a number of flaws sampled from
the population. A simple method of interrogating the effects of
processing changes is thus to measure the strength of a com-
ponent and infer the strength-controlling flaw size from a
known or assumed strength-flaw size relationship. A key
question is thus BWhat can strength distributionmeasurements
on a selected small group of manufactured components say
about the large population of flaws produced in materials by a
manufacturing process?^

The above question has particular relevance for designers
of small-scale components as manufacturing enters the micro-
and nano-scale. Manufacturing processes determine entire
populations of flaws but must be optimized by constrained
measurements on subsets of flaws within groups of such com-
ponents: (1) Establishing statistically-meaningful strength dis-
tributions is difficult on small-scale components, although
great progress has been made using specialized test structures
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[2–7]; (2) Interpreting strengths in terms of small-scale flaw
failure mechanisms is often ambiguous, e.g., the difference
between a crack, a notch, and a contact impression at the
nano-scale is not always obvious from a strength measure-
ment [8]; and, (3) The group of small-scale test components
is often very small relative to the number of manufactured
devices, e.g., tests of hundreds of MEMS sensors are dwarfed
by the hundreds of millions that are installed in automobiles
each year, comprising the $10Bmarket [9]. Hence, micro- and
nano-scale device manufacturers must optimize materials pro-
cessing using strength-measurement data as a probe of flaw
populations under conditions in which the data are difficult to
obtain, interpreting the data can be ambiguous, and, neverthe-
less, the data are then highly leveraged. An answer beyond
Bsmall strengths imply large flaw sizes, and vice versa^ is
required to optimize micro- and nano-scale manufacturing in
a cost-effective manner.

An answer to the question is given here by establishing
clear mathematical linkages between the parameters describ-
ing the flaw population and those describing the strength dis-
tribution of components. The linkages between flaw popula-
tion and strength distribution are first established in a
Bforward^ direction, by assuming a flaw population in a brittle
material and then developing the framework to arrive at the
resulting group fracture-strength distribution. A simple, sym-
metric flaw population is assumed here for demonstration.
The importance of upper bounds in flaw populations [10] in
determining lower-bound strength thresholds and of compo-
nent scale and group size [11] in determining upper-bound
strength limits is made clear, extending previous work
[12–15]. The established linkages are then used in a Breverse^
(or Binverse^ [16]) direction, by fitting a commonly-used
strength distribution function―the Weibull function―to the
quadratically-generated group of components and examining
the implications for the inferred underlying flaw population.
Three small-scale experimental example applications of grad-
ually increasing complexity are then introduced to demon-
strate the use of the linkages to determine underlying flaw
populations from strength tests, allowing direct comparison
with independent measurements: two on micro-scale silicon
(Si) MEMS structures and one on silicon nanowires (SiNWs).
A discussion considers the merits of strength testing and pre-
vious work in this area.

Fracture Probability Analysis

Material Flaw Population

Analysis begins by considering a manufacturing process that
generates a large population of (brittle fracture) strength-
controlling features in a total volume Ω of manufactured ma-
terial, Fig. 1(a). The features have an average density λ

(number/volume) in the material. The feature sizes, c, vary
from feature to feature and the primary intention is that c is a
physical length dimension, say an etch-pit depth or a crack
length, that determines the local strength of the material. c is
thus referred to as a Bflaw size.^ The reciprocal of λ defines
the volumeΔV = 1/λ.ΔV is chosen to be sufficiently small (or
λ sufficiently large) such that each volume ΔV contains ex-
actly one feature arising from the manufacturing process and
ΔV thus defines a fundamental volume element, Fig. 1(b).
(An obvious physical dimension limitation is that, on average,
c ≤ΔV1/3. c could also be a dimensionless geometrical char-
acteristic, say an etch-pit aspect ratio, or a manufacturing pa-
rameter of a non-length dimension, say an etching time or an
abrasive load.) The population of elements (Ω/ΔV) is suffi-
ciently large that the flaw sizes may be treated as a continuum
and thus there exists a probability density function (pdf), f(c),
describing the flaw sizes over the domain cmin ≤ c ≤ cmax. cmin

and cmax are the minimum and maximum flaw sizes in the
population, respectively. f(c) can be considered as the funda-
mental property of the population and has finite or bounded
support between cmin and cmax. A simple, symmetric form for
f(c) to be used here as an example is the quadratic pdf

f cð Þ ¼
0; 0≤c≤cmin

6 c−cminð Þ cmax−cð Þ
cmax−cminð Þ3 ; cmin≤c≤cmax

0; c > cmax

8><
>: ð1Þ

shown in Fig. 2(a) using cmin = 1 μm and cmax = 16 μm. The
early Bforward^ analyses were also carried out using simple, but
unbounded, unimodal f(c) expressions, [12, 13], based on sur-
face indentation tests [17–21] that determine λ(c). These tests
also suggest that c < < ΔV1/3, i.e., that defects are Brare^ or
Bdilute^, an assumption often made in early analyses [e.g., 22]
and more recent simulations [e.g., 23, 24] and which shall be
seen later to be important for the current analysis. Experimental
determination of f(c) may also be used directly [25].

Integration of the pdf gives the cumulative distribution
function (cdf), F(c) [26],

F cð Þ ¼ ∫c0 f c
0

� �
dc

0
: ð2Þ

F(c) gives the proportion of the population of elements with
flaw sizes smaller than c and is thus the probability that an
element selected at random from the population will have a
flaw size smaller than c. Note that integration outside the
region of support is zero,

∫cmin

o f c
0

� �
dc

0 ¼ ∫∞cmax
f c

0
� �

dc
0 ¼ 0

and that normalization of the pdf requires

∫cmax

cmin
f c

0
� �

dc
0 ¼ 1:
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The cdf F(c) thus increases from 0 to 1 over the region of
support cmin ≤ c ≤ cmax. The example quadratic pdf in equation
(1) above meets the normalization requirement and thus the
resulting cdf is, Fig. 2(b),

F cð Þ ¼ 3
c−cmin

cmax−cmin

� �2
0; 0≤c≤cmin

−2
c−cmin

cmax−cmin

� �3

; cmin≤c≤cmax

1; c > cmax

8>><
>>:

ð3Þ

The pdf and cdf given above describe the population of
flaw sizes. To begin to make connection with the distribution
of component strengths, a relationship between element
strength and flaw size is required. One of the simplest is the
Griffith relation [27].

σ ¼ Bc−1=2; ð4Þ
where σ is the strength, Fig. 1(c), of an element containing
flaw size c, here taken as the length of a crack. B is a constant
with dimensions of [strength][length]1/2 involving the element
toughness, set by the material, and the flaw geometry and
residual stress state, set by the manufacturing process. (A typ-
ical value for B = 1 MPa m1/2, used in the example figures,

Fig. 2 (a) The flaw-size probability density function (pdf), f(c), for the
example quadratic material population of flaws, equation (1). (b) The
flaw-size cumulative distribution function (cdf), F(c), for the quadratic
material population of flaws, equation (3). (c) The strength
complementary cumulative distribution function (ccdf), F σð Þ (dashed
line), equation (7), and the strength cdf, F(σ) (solid line), for the
quadratic material population of flaws. (d) The strength pdf, f(σ), for
the quadratic material population of flaws, equation (9)

Fig. 1 (a) Schematic diagram of a large volume of manufacturedmaterial
containing a population of fundamental volume elements. (b) Each
fundamental element has volume ΔV and contains exactly one strength-
controlling flaw of size c, forming a material population of flaw sizes. (c)
The brittle fracture strength of each fundamental volume element is σ,
forming a material population of strengths
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such that a flaw size of c = 1 μm corresponds to a strength of
σ = 1 GPa [27].) More complicated relations than the above
are possible [e.g., 25], but all retain an inverse relationship
between strength and flaw size. Setting

σu ¼ Bc−1=2min ð5aÞ

gives the upper limit to the element strengths, σu, correspond-
ing to the minimum in the population flaw-size distribution.
Similarly,

σth ¼ Bc−1=2max ð5bÞ
gives the lower limit to the element strengths, σth, correspond-
ing to the maximum in the population flaw-size distribution.
The lower bound to the strength, σth, is critical for design and
is known as the Bthreshold strength^.

Direct substitution of the above strength relations, equa-
tions (4) and (5), into the flaw-size cdf, equation (2), gives
the complementary cumulative distribution function, ccdf, or

exceedance, F σð Þ, for the element strength population related
to the cdf by

F σð Þ ¼ 1−F σð Þ: ð6Þ

(The Bccdf^ or Bexceedance^ are not terms particular to

strengths or flaws. F xð Þ is also commonly known as a Btail
distribution^ for a general variable x, or as the reliability or

survival function, F tð Þ, sometimes denoted R(t) or S(t), in
lifetime analyses [26, 28, 29]). The cdf F(c) gives the proba-
bility that an element selected from the population has a flaw

size smaller than c. The ccdf F σð Þ gives the probability that an
element selected from the population has a strength greater
than σ (or exceeds σ). Just as the cdf F(c) ranges between 0
and 1 over the region of support cmin ≤ c ≤ cmax for the popu-

lation of flaws, the ccdf F σð Þ ranges between 1 and 0 over the
conjugate region of support σth ≤ σ ≤ σu for the population of
strengths. The inverse relationship between σ and c underpins
these relationships. F σð Þ for the simple quadratic population
is given by, Fig. 2(c),

F σð Þ ¼ 3
σ−2−σ−2

u

σ−2
th −σ−2

u

� �2
1; 0≤σ≤σth

−2
σ−2−σ−2

u

σ−2
th −σ−2

u

� �3

;σth≤σ≤σu

0;σ > σu

8>><
>>: ð7Þ

The population exceedance is of little direct interest as the
strengths of individual fundamental elements are rarely mea-

sured singly, Fig. 1(c), but F σð Þ is of crucial importance in
developing the strength distributions of groups of multi-
element components (as shown in the next section).
Similarly, the population cdf for strength, F(σ), Fig. 2(c), is
only of interest as a limiting function for comparison with
distributions of components [30, 31]. However, the population

pdf for strength, f(σ), is often of interest in cases in which the
relationship between strength and flaw size is unknown.
Noting that the integral of equation (2) applies to strength as

F σð Þ ¼ ∫σ0 f σ
0

� �
dσ

0

the derivative form is

f σð Þ ¼ dF σð Þ
dσ

: ð8Þ

f(σ) for the simple quadratic population is thus given by, Fig.
2(d),

f σð Þ ¼ 12
σ−2−σ−2

u

� �
σ−2
th −σ−2

u

� �
σ σ−2

th −σ−2
u

� �� 	3
1; 0≤σ≤σth

;σth≤σ≤σu

0;σ > σu

8<
: ð9Þ

where σmin = 250 MPa and σmax = 1000 MPa using equation
(5) and B = 1 MPa m1/2. There are several points to note from
Eqs. (1) to (9) and Fig. 2. First, symmetric forms of flaw-size
pdf and cdf give rise to asymmetric forms of strength pdf and
cdf. Second, the analysis is quite straightforward, but does
require recognition that the inverse relationship between σ
and c leads to the identification of the cdf F(c) with the ccdf

F σð Þ, an identification made in many earlier works, although
not in the form above [e.g., 12,13,15,22,25,32–35] (strictly, all
that is required for this identification is that dσ/dc < 0). Third,
a simple expression for the fundamental flaw-size pdf f(c),
equation (1), led to a much more complicated expression for

the resulting strength ccdf F σð Þ, equation (7). The implication
from these three points is that it would not be obvious what the
mathematical description an unknown pdf or cdf describing
fracture would take given the form of a related pdf or cdf.

Component Strength Distribution

F(c) is the probability that a single fundamental element se-
lected randomly from the population will have a flaw size
smaller than c. If it is assumed that the elements (and thus
their flaws) are independent, the probability F2ΔV(c) that two
elements selected from the population will both have flaw
sizes smaller than c is given by the product of their probabil-
ities taken singly [5].

F2ΔV cð Þ ¼ F cð Þ⋅F cð Þ:

Thus, the probability FkΔV(c) that k elements selected from the
population will all have feature sizes smaller than c is

FkΔV cð Þ ¼ FV cð Þ ¼ F cð Þk

If the k elements form a single component of volume V = kΔV,
FV(c) is the probability that the component contains only flaws
smaller than c or the probability that c is the largest flaw size in
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the component. If a group of many similarly-formed compo-
nents of volume V is assembled, FV(c) is the proportion of
components within the group that contain only flaws smaller
than c or in which c is the largest flaw.

Similarly, if k elements are selected from the population
and are independent, the probability that all k elements have
a strength greater than σ is

FkΔV σð Þ ¼ FV σð Þ ¼ F σð Þk : ð10Þ

If the k elements form a single component of volume V as

above, FV σð Þ is the probability that the component has a
strength greater than σ. If a group of many similarly-formed

components, all of volume V, is assembled, Fig. 3, FV σð Þ is
the proportion of components within the group that have a
strength greater than σ. The group exceedance resulting from
the above quadratic population exceedance, equation (7), is
thus (for the number of components in the group, N, very
large, the group exceedance can be approximated as a contin-
uum distribution)

FV σð Þ ¼
1; 0≤σ≤σth

3
σ−2−σ−2

u

σ−2
th −σ−2

u

� �2

−2
σ−2−σ−2

u

σ−2
th −σ−2

u

� �3
" #k

;σth≤σ≤σu

0;σ > σu

8>>><
>>>:

ð11Þ

The region of support and range of FV σð Þ are identical to

those of F σð Þ. The generation of FV σð Þ from F σð Þ is based
on the independence of the fundamental volume elements and
is consistent with Bweakest-link^ arguments, in which a chain
(component) is only as strong as its weakest link (element) (if
the links are independent, the strength of the chain is not
altered by the presence or absence of links that are stronger
than the weakest link.) Independence and weakest link ideas
were used by Weibull and Epstein in early considerations of
strength variability [36–39], consistent with dilute or
Bisolated^ populations of flaws (i.e., c < < ΔV1/3) and the ab-
sence of Bnon-local^ effects in brittle fracture strengths [32,
40, 41]. The cdf of a strength distribution is complementary to
the ccdf, and thus the cdf for the group of component
strengths, FV(σ), is given by

FV σð Þ ¼ 1−FV σð Þ
¼ 1−F σð Þk

ð12Þ

FV(σ) is the probability that a component of volume V has a
strength less than σ, i.e., the component will fail if exposed
to a stress of σ. If a group of many similarly-formed com-
ponents is assembled, FV(σ) is the proportion of compo-
nents within the group that will fail if exposed to a stress
of σ. FV(σ) component strength cdf curves for values of k =

2, 5, and 50 for the simple quadratic flaw pdf are shown in
Fig. 4, along with the population strength cdf F(σ). The
region of support and range of FV(σ) are identical to those
of F(σ) but the function is much more strongly varying near

σth (independent of the mathematical form of F σð Þ ), ap-
proaching 1 more rapidly as k increases.

The group of components in Fig. 4 is considered sufficient-
ly large that the component strengths may be treated as a
continuum and the cdf FV(σ) may thus be treated as continu-
ous. This is not true generally but provides a convenient ref-
erence. As noted above, the domain of variation of component
strengths is much narrower than the population of element
strengths set by the population of flaw sizes; a result noted
earlier [10]. That is, the transition from near certain survival,
FV(σ) ≈ 0 to near certain failure, FV(σ) ≈ 1 occurs over a much
smaller stress range for components than the population. At
small strengths, both the component and population strength
distributions are terminated by the strength threshold associ-
ated with the maximum flaw size. As the strength and proba-
bility of failure increases however, the component strength
distribution approaches near certainty of failure at strength
levels much less than those set by the population, as a conse-
quence of combining many fundamental elements into a sin-
gle component (Fig. 3). This narrowing tendency increases as
the component size increases, quantified by k (k need not be an
integer, except for chains). The average strength within a
group of components decreases as the component size in-
creases. The limit of both these trends is that k equals the

Fig. 3 Schematic diagram of a group ofN components, each of volume V
consisting of k fundamental volumesΔV. Each component has a strength
σi that can be ranked from 1 to N in an empirical distribution function
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population; the single limiting component contains all the
flaws from the population, including the largest flaw, and thus
exhibits the threshold strength. In practice, k need only be >
≈100 for FV(σ) to appear as a near step-function. Good exam-
ples of contraction with increasing k are shown by experi-
ments with MEMS samples [7] and paper strips of increasing
length [42].

Empirical Distribution Function

As the number of components within a group is finite, σ and
FV take only discrete values. However, it is possible to es-
timate the continuous cdf and pdf of a material population
by a discrete function of the measured or calculated
strengths of a group of components. This function is termed
the Bempirical distribution function^ and is such that at any
specified measured strength the value of the function is the
fraction of observations within the group that has strengths
less than or equal to the specified strength. Operationally,
for a group containing N components, the component
strengths are part of the sequence σi, in which the index i
(or rank) runs from 1 to N. The sequence is ordered, such
that σ1 is the smallest measured strength and σN is the larg-
est. The quantity Pi = (i – 0.5)/N is formed for each strength;
P1 is the smallest number (near zero) and PN is the largest
(near 1). If a strength σi is selected from the ordered se-
quence, the conjugate number Pi gives the proportion of N
for which the measured strengths are less than σi: Pi(σi) thus

provides a statistical measure of FV(σ). An empirical distri-
bution function can obviously be generated for experimen-
tal or analytical groups of strengths.

The empirical distribution functions, Pi(σi), for component
strengths within groups of various numbers, N = 10, 30, and
100, are shown in Fig. 5. The discrete component strengths
were determined from the simple quadratic population flaw-
size pdf using a component size of k = 5 and are shown as the
open symbols. The population strength cdf, F(σ), is shown as
the solid line. The domains of strengths within the discrete
empirical distribution functions are shifted to smaller strengths
than the continuous population of strengths set by the popu-
lation of elements, and are much narrower, consistent with the
continuous FV(σ) curves shown above. At small strengths, the
component empirical distribution functions are terminated by
the strength threshold associated with the maximum flaw size
within the population. At large strengths, the component em-
pirical distribution functions are terminated by the strongest
component within the group. The strength of this strongest
component, and the average strength within a group, increased
with the number of components within the group, but both fell
well below the values set by the population. The limit of these
trends is that as N/k approaches its maximum value (assuming
sampling without replacement from the population of ele-
ments), the group of components contains all the flaws from
the population, including the largest and smallest flaws, and
thus the empirical distribution function will approach the pop-
ulation cdf.

Weibull Distribution Function

The above development highlighted the increasing analytical
complexity in proceeding from a simple population flaw-size
pdf (a quadratic) to a more complicated group strength cdf. As
it is fundamental to consider a population of flaws from a
theoretical point of view, it makes sense to proceed analytical-
ly in this Bforward^ direction. However, it is far easier and
more common to consider a group of components from the
experimental point of view of the empirical distribution of
strengths. Hence, it makes sense to fit a simple cdf to the
empirical distribution function and then proceed in the
Breverse^ direction to a (potentially) more complicated popu-
lation flaw-size pdf. Hence, many groups of components are
described by a (simple) stretched exponential cdf, often
known as a Weibull [37] (or Fréchet or Rosin-Rammler [43,
44]) distribution function

Fgroup σð Þ ¼ 1−exp −
σ−σth

σθ

� �m
 �
ð13Þ

over the (unbounded) region of support σ ≥ σth (m = 1 corre-
sponds to the exponential distribution [28, 43], m = 2 corre-
sponds to the Rayleigh distribution [43]). The subscript

Fig. 4 Plot of the strength cumulative distribution function (cdf), FV(σ),
for large groups of components of different volumes V = kΔV (Eqs. (11)
and (12)) for the quadratic material population of flaws. The cdf of the
population (equivalent to k = 1) is shown as the bold line (Fig. 2(c)). As
the component size increases (k increases), the group strength cdf is
contracted and decreases away from the population cdf towards the
limiting threshold
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Bgroup^ in equation (13) indicates that this is a group-specific
function (the related BV^ is not used as V is usually not
known). m is a group-specific exponent and σth and σθ are
group-specific strength parameters; the exponent and strength
parameters are obtained by fitting to Pi(σi) for a group of
components. An example is shown in Fig. 6(a), in which
equation (13) was visually fit to the k = 5, N = 30 group from
the simple quadratic example, constrained only by the known
σth = 250 MPa, resulting in m = 1.60 and σθ = 41.0 MPa (the
Bcharacteristic strength^ is σth + σθ = 291.0 MPa).

Explicit quantitative determination of the underlying flaw
population from aWeibull cdf fit begins with recognizing that
the Weibull ccdf complementary to the above cdf is, similar to
equation (12),

Fgroup ¼ 1−Fgroup σð Þ ¼ exp −
σ−σth

σθ

� �m
 �

By implication, the ccdf for the population is of the same form
(equation (10)),

F σð Þ ¼ exp −
σ−σth

σ0

� �m
 �
ð14Þ

where m, σth and σ0 are parameters describing the element
population over the region σ ≥ σth. (The simple form of this
equation enables inhomogeneous loading to be easily
studied―see Appendix) The scaling parameter for the popu-
lation, σ0, is related to the scaling parameter of the group, σθ,
by the component volume

Fig. 5 Plot of the strength empirical distribution function for groups of
components of fixed volume (k = 5) but various numbers of components
within the group,N. The cdf of the population is shown as the lines (k = 1,
N > > 1, Fig. 4). At small group numbers (small N), the group strength
empirical distribution function is significantly truncated at large strengths
away from the population cdf but the threshold remains well defined

Fig. 6 (a) Plot of the strength empirical distribution function for a group
of N = 30 components drawn from the quadratic flaw-size population
(symbols, k = 5, Fig. 5(b)) and a fit of the Weibull distribution function
Fgroup(σ) (line, equation (13)). (b) Plot of the flaw-size pdf f(c) inferred
from the Weibull Fgroup(σ) fit, dashed line, equation (17); the bold solid
line shows the domain of flaw sizes conjugate to the domain of observed
strengths. The underlying quadratic population is shown as the dotted
line, equation (1), Fig. 2(a). Only at large flaw sizes is there agreement
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σθð Þm ¼ σ0ð Þm=k; ð15Þ
and this relationship can be used to scale the Weibull distribu-
tion between groups of different volume components. The
group cdf above is often written in terms of population distri-
bution and component volume terms rather than a mix of
population and group terms,

Fgroup σð Þ ¼ 1−exp −k
σ−σth

σ0

� �m
 �

Note that it is not dimensionally correct to replace k by V,
although this is common (as it makes it clear that strengths
should decrease as component size increases, but conflates the
Weibull distribution with the unrelated independent element
assumption and requires σ0 to have dimensions other than
stress). Use of the known k = 5 gives σ0 = 112 MPa here,
equation (15).

The well-known population strength pdf conjugate to the
above population cdf [5], using equations (8) and (14), is

f σð Þ ¼ m
σ0

σ−σth

σ0

� �m−1

exp −k
σ−σth

σ0

� �m
 �

This is known as the Rosin-Rammler distribution [44], when
used to describe particle or fragment size. The inverse rela-
tionship between strength and flaw size substituted into the
ccdf relation gives the Weibull-idealized form for the flaw
population cdf

F cð Þ ¼ exp −
c−1=2−c−1=2max

c−1=20

 !m" #
; 0≤c≤cmax

1; c > cmax

8><
>: : ð16Þ

Thus, the Weibull-idealized population flaw size pdf is

f cð Þ ¼ exp −
c−1=2−c−1=2max

c−1=20

 !m" #
c−1=2−c−1=2max

c−1=20

 !m−1
m c=c0ð Þ−3=2

2c0
; 0≤c≤cmax

0; c > cmax

8><
>:

ð17Þ
shown as the dashed line in Fig. 6(b) (using B = 1.0 MPa m1/2,
c0 = 79.7 μm and cmax is unaltered). The idealized flaw-size
pdf has a bounded region of support, unlike the Weibull
strength pdf. The experimental flaw-size pdf is bounded by
the measured strengths and is shown in Fig. 6(b) as the solid
line. For reference, the underlying quadratic flaw-size pdf,
equation (1), Fig. 2(a), is reproduced as the dotted line.

A Weibull distribution fit to a group of component
strengths, Fig. 6(a), gives rise to an inferred population of flaw
sizes that agrees with the known population at large flaw sizes,
but which disagrees at small flaws, Fig. 6(b). The disagree-
ment in this case is a consequence of a lack of constraint on the
Weibull fit at large strengths due to the contracting and trun-
cating effects discussed above. The contraction and truncation

effects are also evident in the domain of flaw sizes over which
the deconvoluted population pdf is supported by the strength
observations: in this case it was about half the known domain,
at large flaw sizes. To obtain a reliable estimate of the small-
flaw end of the flaw pdf, Weibull or otherwise, a very large
group of components, many more than commonly used or
used here, is required (assuming small k).

At a fundamental level, however, the required form of
the pdf, equation (17), for the population of flaws generated
by a manufacturing process and ultimately responsible for a
Weibull distribution of component strengths is not intuitive:
it is not a power law [10, 22, 35, 40] or an exponential, or a
power law-exponential product [12–14]. That is, it seems
unlikely that any model of any manufacturing process
would give rise to a population of flaws given by equation
(17). It seems unlikely then, that the Weibull-form cdf for a
group of strengths has any fundamental basis in a pdf for a
population of flaws generated by a manufacturing process.
An important exception to this statement is that a threshold
in the strength cdf is clearly associated with a maximum in
the flaw pdf.

Example: Experimental Applications

The analysis above provides the connection between a mate-
rial flaw population and a component strength distribution.
Insight was provided by considering mathematically simple
flaw population and component strength expressions that de-
scribed simple forms, parabolic and sigmoidal, respectively.
In cases in which the forms are not simple, perhaps requiring
complicated mathematical expressions, or representing exper-
imental data, the connections between flaw population and
strength distribution must be made numerically (e.g., [12]).
Three example applications of the above framework to exper-
imental data are provided here, using numerical analysis fol-
lowing the analytical example of Fig. 6 and gradually increas-
ing in complexity. The first example considers two micro-
scale components of Si MEMS test structures characterized
by unimodal flaw populations. This is the simplest example,
illustrating state-of-the-art data with large N and changes in f.
The second example considers another set of Si MEMS struc-
tures characterized by a known bimodal flaw population with
moderately large N. The third example considers SiNWs that
have undergone various oxidation steps leading to changes in
both f and k, and tested with small N. In these examples,
analysis proceeds in the reverse direction by beginning with
the experimental strength distributions of groups of compo-
nents and inferring the underlying flaw populations for com-
parison with independent observations. Each example took
minutes to analyze using commercial software on a desktop
computer.
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Si MEMS Structures: Unimodal Flaws

The application of the reverse analysis procedure is part of a
conventional manufacturing process and enables Bwhat is^
questions to be answered. The question here: BWhat is the
flaw population corresponding to a measured strength
distribution?^ The measured strength distributions taken here
result from tensile tests on Si components formed by typical
dry-etch MEMS manufacturing processes and featured in a
recent review of MEMS strengths [8]; details are given else-
where [5, 6]. Briefly, the first group of components were N =
1008 polycrystalline Si bars about 2.0 μm× 2.25 μm in cross
section and 20 μm long. The second group of components
were N = 209 single-crystal Si bars about 25 μm× 8 μm in
cross section and 250 μm long.

Figures 7(a) and 7(b) show the empirical distribution func-
tions Pi(σi) of the component strengths. Symbols represent
individual measurements. The solid lines represent best-fit
Weibull distributions [5, 6], equation (13), to the groups, lim-
ited to the empirical regions of support, about 2.0 GPa to
3.2 GPa and 1.4 GPa to 3.2 GPa, respectively. The fits are
good, representing smoothed sigmoidal forms of the strength
data, although there are some deviations in places. The con-
jugate domains for the empirical flaw-sizes were about 60 nm
to 160 nm and 270 nm, respectively, using B = 0.75 MPa m1/2

[8] in equation (4). f(c) variations for the populations of flaws,
using k = 3, are shown in Figs. 7(c) and 7(d): symbols repre-
sent individual determinations at the flaw-size indicated; the
solid lines represent the determinations from the (smoothed)
Weibull fits to the strength data limited to the empirical do-
mains of flaw sizes. (The exact value of k is unknown and
hence k = 3 was used here for ease of comparison between
groups and with the analytical work above. Experiments on
identically-processed but different size components are re-
quired to estimate k. The value chosen does not influence
the findings.)

The first point to note in Figs. 7(c) and 7(d) is that the
scatter in the individual data about the smoothed fit is con-
siderable; a consequence of taking derivatives over expand-
ed domains (c ~ σ−2), even of data with only small devia-
tions from smoothness, Figs. 7(a) and 7(b). The smoothed
trends indicate asymmetric material flaw population pdfs
consisting of single Bwings^ with modes at approximately
the minimum values and extending by about a factor of five
to the maximum values, similar to Fig. 6. The uncertainties
in the peaks of the smoothed distributions are approximate-
ly the widths of the smoothed lines, consistent with the fits
to the raw strength data, Figs. 7(a) and (b). The second point
is that the flaw distribution in Fig. 7(d) is broader than that
in Fig. 7(c), reflecting different processing procedures.
These behaviors are less discernible from the individual
data and hence a great benefit of the smooth Weibull fits
is to display underlying trends (other smoothing schemes,

e.g., normal distribution, [45, 46] would provide the same
benefit). Both the raw and smoothed flaw-size data much
better estimate the large-flaw pdf than the small-flaw pdf,
for which there is no information for flaws smaller than
about 50 nm. Using the experimental data in Fig. 7 high-
lights that the relationship between a material flaw popula-
tion (in this case, inferred to be asymmetric within scatter)
and the resulting strength distribution of a group of compo-
nents (here, symmetric and relatively smooth) is not intui-
tively obvious.

A third, important, point is that the sizes of the strength-
controlling flaws in Fig. 7 are much larger than the surface
features identified in independent atomic force microscopy
(AFM)-based topography measurements on these materials
[6, 47]. Grain-boundary grooves about 1 μm apart with depths
>15 nm were observed on the surface of the polycrystalline
material from the first group [47]. Surface roughness with
about 40 nm peak-to-valley amplitude was observed on the
surface of the single-crystal material from the second group
[6]. No features were observed in the flaw size ranges of Fig.
7. The implication is that the strength controlling flaws were
present but not observed in these measurements, most likely
because of the limited AFM scan areas. Hence, the
manufacturing parameter λ, the density of strength-
controlling flaws, is small and not well represented by topo-
graphic observations and, conversely,ΔV is large. The differ-
ence between small- and large-scale topographic features was
noted in a roughness study ofMEMS surfaces [48], as was the
lack of correlation of strengths with small-scale features, as
noted here. The test component parameter k is also small,
consistent with values used above, and small λ and k are
consistent with the independent element assumption [36–39]
and the lack of step-functions in FV(σ), appearing in Fig. 4 for
large k.

Si MEMS Structures: Bimodal Flaws

The second set of measured strengths also resulted from ten-
sile tests on Si components formed by dry-etch MEMS
manufacturing processes [8, 49]. The set consisted of N =
105 single-crystal Si bars about 25μm× 8 μm in cross section
and 250 μm long. The set included bars with regular, small,
surface scallops formed by the intentional etching process and
bars with irregular, larger, surface pitting formed by an unin-
tentional etching process. The bars were formed in the same
manufacturing cycle and separated into the scallops and
pitting sub-populations by independent dimensional measure-
ments; details are given elsewhere [49].

Figure 8(a) shows the empirical distribution function
Pi(σi) of the component strengths. Symbols represent indi-
vidual measurements; the scallops (mostly large strengths)
and pitting (mostly small strengths) are indicated by differ-
ent symbols. The strength overlap region is indicated by a
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shaded band. The bimodal nature of the distribution is in-
dicated by the inflection within the overlap region separat-
ing two sigmoids. The complete bimodal region of support
was about 1.0 GPa to 2.5 GPa and the conjugate domain for
the flaw-sizes was about 70 nm to 1000 nm using B =
0.75 MPa m1/2 [8] in equation (4). f(c) variations for the
population of flaws, using k = 3, are shown in Fig. 8(b):
different symbols represent the different surface finishes
with scallops mostly small flaws and pitting mostly large
flaws. The shaded band once again indicates the overlap
region. Although there is considerable scatter as in Fig. 7,
it seems clear that there are two flaw populations: one sub-
population of large pitting flaws peaked to the right of the
overlap band and another sub-population of small scallop
flaws peaked to the left of the overlap band. This explicit
calculation of bimodal flaw sizes greatly extends the earlier
speculation based on the strength measurements. As above,
the size of the strength-controlling flaws in Fig. 8 is much
larger than the sizes of the observed topographic features, in
this case about 35 nm to 200 nm. The implication is the
same as above, the strength-controlling features were not
observed due to AFM scan limitations and that λ and k are
small. An extreme example of widely-separated flaw sub-
populations is shown in experiments on paper strips [42].

SiNWs

The final sets of strength distributions considered here result
from bending tests on SiNWs formed by vapor-liquid-solid
growth. Mean strengths―approaching the theoretical
values―and structures as a function of oxidation time were
considered elsewhere [50]. Briefly, the SiNWs were about
25 μm long × 70 nm in diameter, consisting of cylindrical Si
cores and annular section SiO2 shells, in groups of N = 10 to
11 wires of different oxidation time and shell thickness; the
overall SiNW radius increased with oxidation time. The
strengths were determined from a non-linear analysis of the
bending curvature at failure.

Figure 9(a) shows the empirical distributions of the groups
of SiNW strengths. The distributions are all steep, barely sig-
moidal, and the native SiNWs are twice as strong (about
20 GPa) as the oxidized wires (about 10 GPa), which exhibit
a non-monotonic trend in strength with oxidation time (rapid
decrease followed by gradual increase); the legend in Fig. 9(b)
is common to both plots. The conjugate domains for the em-
pirical flaw sizes were about 1 nm to 10 nm, using B =
0.75 MPa m1/2 for the native wires and 0.5 MPa m1/2 for the
oxidized wires [8, 50]. The f(c) variations were calculated by
assuming surface flaws and scaling k with wire diameter,

Fig. 7 (a) Plot of the strength
empirical distribution function for
a group of polycrystalline Si
MEMS components. Symbols are
individual strength
measurements, line is best-fit
Weibull smoothing function. (b)
Plot of the strength empirical
distribution function for a group
of single-crystal Si MEMS
components. Notation as in (a).
(c) Plot of the population flaw-
size pdf inferred from (a).
Symbols and line as in (a). (d)
Plot of the population flaw-size
pdf inferred from (b). Symbols
and line as in (b)
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increasing from k = 3 for the native wires to k = 4.5 for the
maximally-oxidized wires [50]. The f(c) variations are shown
in Fig. 9(b) (using a logarithmic scale for ease of display). The
small N effects severely limit the information that can be ob-
tained about the flaw populations: In each case, the inferred
flaw population consists of a single wing truncated at the peak,
although it is clear that the unoxidized wires have very small
flaws, that initial oxidation greatly increases the flaw size, and
that further oxidation gradually decreases the flaw size.

A likely scenario is that the strengths of the native wires are
controlled by near-atomic scale flaws in the Si. On initial
oxidation, inhomogeneous patches of oxide form on the sur-
face of the wires and strengths are controlled by large flaws at
the Si-oxide patch edges and corners. On further oxidation, the
oxide coating becomes continuous and the strengths are con-
trolled by smaller flaws on the oxide surface. In this case, the
size of the strength-controlling flaws is comparable to the
observed topographic features arising from the growth and

oxidation processes. Fig. 10 shows AFM surface height traces
along the lengths of the SiNWs: For both the strongest (native)
and weakest (initial oxidation) SiNWs the correlation between
the peak-to-valley variation in the surface topography and the
strength-controlling flaw size is clear, about 1.2 nm for the
native SiNWs and about 6 nm for the initially oxidized
SiNWs. The implication here is that the observed topography
is representative of the strength-controlling flaws because the
AFM scans are comparable to the stressed areas. Noting that
the extremes of topography vary over about 100 nm in Fig. 10
and that the extremes of the tensile stresses generated in the
bent wires extended over 5 to 10 SiNW diameters [50], about
350 nm to 700 nm, the estimate of the effective sample size of
k = 3 to 4.5 is appropriate.

Discussion

The above analysis provides a clear and unambiguous path
from the fundamental flaw-size population pdf, f(c),

Fig. 8 (a) Plot of the strength empirical distribution function for a group
of single-crystal Si MEMS components consisting of a bimodal
population of flaws: an uncontrolled pitting etch and and a controlled
scallop etch. Different symbols indicate the different etch populations
and the shaded band indicates the region of strength overlap. (b) Plot of
the population flaw-size pdf inferred from (a). Symbols as in (a). The
shaded band indicates the region of flaw-size overlap

Fig. 9 (a) Plot of the strength empirical distribution functions for groups
of native and oxidized SiNWs. Symbols are individual strength
measurements. (b) Plot of the population flaw-size pdfs inferred from
(a). Legend in (b) indicates annealing (oxidation) times
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characterizing a manufactured material, to an empirical distri-
bution function, Pi(σi), describing the strengths of a selected
group of components. In following this forward analysis path,

f cð Þ→F cð Þ→F σð Þ→FV σð Þ→Pi σið Þ, the assumptions and
effects regarding the strength-flaw-size relationship, the volume
of the components, and the number in the group, were all made
clear. In particular, the contracting effects of component volume

in the F σð Þ→FV σð Þ step and the truncating effects of group
number in the FV(σ)→ Pi(σi) step were noted. Many of the
ideas and assumptions in the analysis have been included in
the extensive previous works on this subject: the probabilistic
independence of elements assumption (the weakest link hy-
pothesis) [36–39]; the identification of the population flaw size

cdf with the population strength ccdf (F cð Þ→F σð Þ, and vice
versa) [12, 13, 15, 22, 32–35]; the recognition that the empirical
distribution function is a statistical estimator of the underlying
group cdf (Pi(σi)→ FV(σ), see below); that specialized MEMS
test structures are required to provide such estimation [2–7];
and, that reverse or inverse analysis is possible [16]. The anal-
ysis here clearly separates these ideas with a minimum of no-
tation within the well-established concepts of probability [26]
and allows for new experimental interpretation.

The reverse analysis path, leading from an experimental
measurement of a group of strengths to the underlying popu-
lation of flaws, f(c)← Pi(σi), was also clear and unambiguous
and subject to the same assumptions and effects. This might be
the most important part of the analysis and answers the orig-
inal question. In general, truncation and contraction effects
lead to an incomplete specification of f(c) from Pi(σi) and in
particular the small flaw region of the flaw population is not
specified. However, truncation effects do not affect the large
flaw region at all and contraction effects enhance the ability to
specify the large flaw region. The threshold strength is very
well estimated by component strength measurements and as a

consequence the maximum flaw in the manufactured popula-
tion is also well estimated, Figs. (4, 5, 6, 7, 8 and 9). Both of
these parameters are of direct use to designers and manufac-
turers. Using a margin of safety, a designer can use the thresh-
old strength and its uncertainty directly in design calculations
for components manufactured with the same process as the
test components. Manufacturers can use the maximum flaw
size to identify mechanisms leading to the largest flaws and
alter processing parameters accordingly. The importance of
the threshold, beyond its use as a descriptive fitting parameter
[5, 36], in characterizing processing effects [7] and in design
[5, 8], has been so far little noted.

With the exception of the threshold, it is difficult to see how
strength measurements of components can provide a good
estimate of the flaw population of manufactured materials.
Deconvolution of Pi(σi) from measurements on a sampled
group of components to obtain quantities characterizing the
underlying population is hampered by several factors: First,
k > 1 contracts the domain over which strengths are observed
to vary significantly and hence limits the ability to fit experi-
mental data to an analytical form. The domain is bounded at
small strengths, however, by the threshold. Second, finite N
truncates the domain by eliminating large strengths, again
limiting fitting ability. Third, unknown k precludes exact con-
nection between the group ccdf and the population ccdf. The
first and second of these largely affect deconvolution precision
and the third largely affects accuracy: see Fig. 6. Precision is
further degraded by the derivative nature of the reverse trans-
formation f(c)← F(c): see Fig. 7. An even further effect, on
accuracy, is that, even if the population strength cdf is well
estimated, knowledge of the strength-flaw size relationship F
cð Þ←F σð Þ is required to specify the population flaw-size pdf
and thence infer manufacturing and design choices (e.g.,
notches [51] rather than cracks would result in a different
σ(c) dependence). Overcoming the contraction and truncation
issues would seem to favor MEMS-based samples by using
small test components (small k) tested in large numbers (large
N) [e.g., 5,7] and this is the focus of current research. In prior
published experiments, [7] implicit determination of f(c) was
used in predicting strength distributions of MEMS samples
adjusting for threshold variations and using a range of k values
(enhanced by the use of stress concentrating notches). In par-
ticular, these experiments showed that larger component size
range will improve parameter estimation by enabling a wider
strength range. Another suggestion is that small-enough k
could reduce N to manageable values to obtain the required
uncertainty in explicit determination of f(c) [40, 46].

Unsurprisingly, given the above points, the Weibull distri-
bution function has played little role in the above analysis. In
Fig. 6, the Weibull function has been used as a convenient
demonstration of the effects of extrapolation and in Fig. 7 it
has been used as a convenient smoothing function. In both
cases, as all unimodal pdfs produce sigmoidal cdfs, any

Fig. 10 AFM topographic data taken along the length of SiNWs (lines)
and average flaw sizes taken from Fig. 9 (shaded bands)
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sigmoid would have fulfilled the requirements. Conversely,
the flexibility in the sigmoidal shape of a Weibull cdf can be
used to describe the strength distribution of many (non-
Weibull) unimodal flaw pdfs [e.g., 12,13]. The analysis above
thus affirms many of the points of Todinov [42, 52] and Zok
[53]: Strength (or electrical breakdown [41]) distributions
need not beWeibull-like; theWeibull function(s) have nothing
to do with weakest link or independence of element ideas,
equation (10); the Weibull functions are not fundamental in
the sense of derivability, equation (17); and, the flexibility in
theWeibull sigmoid cdf leads to apparently good fits for small
data sets far from the upper bound of a group, equation (13),
leading to the idea that there is some underlying physical
significance. With regard to this last point, the empirical
choices of m and σθ enable equation (13) to fit the data from
many groups of components (not only strengths). The appli-
cation often involves linearization of equation (13) into the
form y = ax + b by setting σth = 0, y = ln[ln(1/(1 – F))], and
x = lnσ, and similar transformation of the Pi(σi) parameters
by ln[ln(1/(1 – Pi))], and x = lnσi; fitting a straight line then
gives m = a and lnσθ = b/a. The contracting double-
logarithmic transformation causes nearly all data sets to ap-
proximate a straight line; the straightening effect is exacerbat-
ed in this case by k and N effects leading to data contraction
and truncation as described above. Data are often plotted in
transformed coordinates and straight-line behavior in such
plots presented in support of the two-parameter (threshold-
less) equation (13). If the data do not form a straight line, the
formulation is often enforced on limited domains, requiring
m =m(σ) [20]. (Weibull allowed for non-zero σth [36, 37], but
the historical apparent simplicity and applicability of the two-
parameter linearization have largely led to zero threshold anal-
yses.) Empirically, large values of σθ are associated with large
strengths and large values of m are associated with small
strength variability. The extrapolation from strength tests on
a group of components to estimation of the population of
manufactured flaws is usually implicit and qualitative; large
σθ and m are Bgood^ as they represent small flaws and little
flaw variability.

Conclusions

The analytical connection between a manufactured flaw pop-
ulation and a sampled component strength distribution is clear
and simple: forward analysis permits strength distributions to
be predicted theoretically and reverse analysis permits flaw
populations to be estimated experimentally. Analysis suggests
strength-controlling flaw densities are small and that strength-
controlling flaws are larger than most topographic observa-
tions would suggest. The analysis strongly supports the
weakest link hypothesis but shows that the Weibull function
is not related to this hypothesis and is not necessary for

strength analysis. Some open questions fall into the two cate-
gories of forward and reverse analysis: First, the application of
the forward analysis procedure in the manufacturing process
enables Bwhat if^ questions to be answered. The questions
here are BWhat do strength distributions look like if flaw pop-
ulations are asymmetric? bimodal? multimodal? [42, 53] and
what if the component were a different size [40]?^ For exam-
ple, the bimodal flaw population could represent a process that
results in a majority population of typical manufacturing flaws
and a minority population of large flaws (Boutliers^) and ex-
trapolation from test size to component size will always be
required. Second, and more important, a variety of statistical
techniques enable strength thresholds to be better estimated
using analyses of strength distributions. For example, confi-
dence intervals for threshold strengths and the conjugate max-
imum flaw sizes could be estimated assuming a range of as-
sumed distributions, providing more confidence to manufac-
turers of nano- and micro-scale components about the out-
comes of limited strength tests.
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Appendix: Inhomogeneous Loading

For a component composed of M discreet sub-volumes Vi,
such that∑M

i Vi ¼ V where i is a sub-volume index, and each
sub-volume consists of ki elemental volumes such that Vi =
kiΔV and thus ∑

i
ki ¼ k, the independent probability assump-

tion gives the component ccdf as

FV σð Þ ¼ F σð Þk1 F σð Þk2…F σð ÞkM

If each sub-volume is held to a separate strength exceedance,
σi, the overall component exceedance is

FV σi; kið Þ ¼ F σ1ð Þk1 F σ2ð Þk2…F σMð ÞkM

for the specified configuration. The exceedance can thus be
written as a logarithmic sum

ln FV σi; kið Þ
h i

¼ ∑
M

i
ln F σið Þ
h i

ki

¼ λ∑
M

i
ln F σið Þ
h i

Vi

where the second line makes clear that the sum is over the
volume of the component and λ = 1/ΔV is the number density
of elements (and thus flaws) per volume.
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If Vi and thus ΔV are reduced in size to the infinitesimal
limit (and λ is still defined) such that the component can be
regarded as a continuum, each point can be held to separate
strength exceedance, σ(x, y, z), where (x, y, z) is a point coor-
dinate in the component. The sum above thus becomes an
integral

ln FV

� �
¼ λ ∫

V
ln F σ; x; y; zð Þ
h i

dV

where FV is understood to be configuration dependent. If the
exceedance is constant, the integral collapses to a product and
gives the oft-cited result FV = 1 - exp [λVln(1 – F)], [42, 52,
54] recognizing that F ¼ 1−F. The full equation can be re-
duced in complexity considerably: (1) If a plane (say, x-y) of
fixed area is held to a separate exceedance such that σ = σ(z)
only and dV = dxdydz = Axydz, where Axy is the area of the
plane. Thus

FV ¼ exp μ ∫
Z
ln F σ; zð Þ
h i

dz

 �

;

where μ = λAxy is the number density of flaws/length along z in
the plane; (2) If a simple form is selected for ln F

� �
, say the

Weibull distribution with σth = 0 such that ln F
� � ¼ − σ=σ0ð Þ m.

Thus

FV ¼ exp −
μ
σm
0

∫
Z
σ; zð Þmdz


 �

and, (3) If a simple form is selected for σ, say the outer-fiber
tensile stress in a built-in cantilever beam of length L,
supporting a weight w at the free end, such that σ = wz/Z,
where Z is the section modulus of the beam perpendicular to
z. Thus

FL wð Þ ¼ 1−exp −μ
w
Zσ0

� �m

∫
L

0
zmdz

" #

¼ 1−exp −
μL

mþ 1ð Þ
wL
Zσ0

� �m
 �

similar to an earlier derivation [55]. The analogous expres-
sion for a homogeneous rod of cross section A, uniformly
loaded in tension by weight w, is

FL wð Þ ¼ 1−exp −μLA
w
Aσ0

� �m
 �

The group cdf FL(w) gives the proportion of beams or rods
of length L that fail under weightw; the probability of failure is
now expressed in terms of the extensive variables of failure
weight and component size, rather than the intensive variable
of strength σ.

In both inhomogeneous and homogeneous configurations,
the variation of the cdf with the failure variable w is identical.
The form of the distribution is unaffected by the mode of
loading. However, in the case of inhomogeneous loading,
(unsurprisingly) there is a much greater dependence on the
geometry of the component: In the case of the beam in bend-
ing, an additional dependence on beam length and details of
the shape of the cross-section appear in the cdf, whereas for
the tensile rod, only the area of the cross section appears. Note
also that the flaw-population exponent appears twice in the
inhomogeneous cdf. The magnitude of the distribution is thus
strongly affected by the geometry of the component in inho-
mogeneous loading. The extreme opposite to the simple case
considered above is a stochastic distribution of stress super-
posed on the stochastic distribution of strengths [51].
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