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Abstract
The failure forces and fracture strengths of polysilicon microelectromechanical system (MEMS)
components in the form of stepped tensile bars with shoulder fillets were measured using a
sequential failure chain methodology. Approximately 150 specimens for each of four fillet
geometries with different stress concentration factors were tested. The resulting failure force and
strength distributions of the four geometries were related by a common sidewall flaw population
existing within different effective stressed lengths. The failure forces, strengths, and flaw
population were well described by a weakest-link based analytical framework. Finite element
analysis was used to verify body-force based expressions for the stress concentration factors and
to provide insight into the variation of specimen effective length with fillet geometry. Monte
Carlo simulations of flaw size and location, based on the strength measurements, were also used
to provide insight into fillet shape and size effects. The successful description of the shoulder
fillet specimen strengths provides further empirical support for application of the strength and
flaw framework in MEMS fabrication and design optimization.

Keywords: strength distributions, flaw populations, polysilicon microelectromechanical system,
shoulder fillets, fracture
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1. Introduction

A core function of engineering mechanics is to translate lim-
ited coupon-level material test data into accurate predictions
of the load bearing ability of components in novel shapes
and sizes. For economic reasons, such predictions are usu-
ally based on measurements of test coupons or test compon-
ents much simpler in shape, smaller in size, or fewer in num-
ber than those manufactured for commercial application. For
microelectromechanical systems (MEMS) in particular, pre-
diction of the mechanical performance and reliability of the

many billions of manufactured MEMS devices [1] thus entails
significant leverage of information from, at most, thousands of
test components sampled and measured to make such predic-
tions [2]. Thus, prediction of the load bearing ability ofMEMS
requires clear quantitative relationships between the mechan-
ical properties of the materials forming the components and
the shape and size of the components. The majority of MEMS
devices are fabricated from polycrystalline silicon (polysil-
icon) and hence the relevant material property for load bear-
ing assessment is brittle fracture strength [3–6]. An extensive
review of MEMS-related silicon strength [7] showed that the
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qualitative factors controlling polysilicon fracture strengths
are well understood, such that the relevant processing-
structure-property relationships are well established. How-
ever, the review also suggested that although there were
many quantitative measurements of failure loads, interpreted
as material strengths for simple shapes and sizes of compon-
ents, quantitative, predictive, materials property-performance
relationships were largely absent. Therefore, optimized com-
ponent design, manufacturing yield, and operational reliability
predictions for MEMS are significantly impeded. The work
here addresses this issue by validating a recently developed
probabilistic flaw-sampling model [8–10] using the fracture
strengths of a set of MEMS test components with a range of
stress-concentrating features.

In commonwith single-crystal silicon, polysilicon is brittle,
and the fracture strength σf is controlled by flaws [7, 11]:
the larger the flaw, the smaller the strength. In some brittle
materials, strength-controlling flaws are cracks associated
with material and elastic discontinuities such as bulk pores
or surface roughness [12], and in others, flaws are the resid-
ual deformation and cracks generated on surfaces by elastic-
plastic contacts and scratches. Detailed analyses have been
developed in recent work [8, 9] considering the relation-
ships between component strength distributions and under-
lying elastic and elastic-plastic flaw size populations in bulk
ceramics, silicon dies, MEMS, and nanowires. The strength-
controlling flaws in polysilicon MEMS are usually sub-µm-
scale roughness or grain boundaries grooves on component
sidewalls. As a component is loaded, tensile stress concen-
trations develop in zones at the base of the grooves, particu-
larly deep grooves, driving crack initiation and propagation.
Under uniform far-field stress, the largest flaw or most potent
groove-crack combination becomes unstable at the smallest
applied load and therefore determines the strength of the com-
ponent. The details of fabrication determine flaw population
in a material in terms of the distribution of groove sizes and
their spatial density on the sidewalls, thus determining the
strength distribution for a group of components. The probab-
ilistic flaw-sampling analyses have been applied in the decon-
volution of strength measurements of two different shaped
MEMS components—notched tensile bars and uniform tensile
bars—to determine the size distribution and spatial density of
flaws in MEMS as a function of position in the MEMS fabric-
ation stack [10].

In the study here, the recent work is extended to assess
strength measurements of polysilicon MEMS components
with a range of different stress concentrating features—four
stepped tensile bars characterized by different shoulder fil-
lets. The study has many features in common with the pre-
vious work [10]: (1) All components were formed in the
same MEMS fabrication sequence, such that the strength-
controlling flaws in each component are drawn from the same
population; (2) A different stress concentration factor (SCF)
Kt was used for each different macroscopic component shape,
on which the common microscopic surface flaw population
is superposed; (3) The failure force Ff for each component
was determined using a sequential failure chain geometry; and
(4) The flaw population was characterized by two intensive

attributes, a probability density function (pdf), the intensive
flaw size pdf f (c), where c is the flaw characteristic length
dimension, and a mean separation of flaws on a sidewall ∆L,
where 1/∆L is the mean spatial density/length. In addition
to extending the applicability and confidence in the previous
methodology, the results herein reinforce the different engin-
eering aspects of MEMS device fabrication. In MEMS design,
the extensive, size-dependent properties of MEMS compon-
ents (e.g. Ff) govern the performance of a MEMS device. In
MEMS manufacturing, the intensive, size-independent prop-
erties of MEMS materials (e.g. f (c) and ∆L) are determined
by MEMS processing. The extensive and intensive properties
are related by component geometry (e.g. relative dimensions
determine Kt and length determines number of flaws). It is
the goal of this work to advance MEMS design capabilities
by establishing a clear connection between the extensive and
intensive properties of MEMS components, thus facilitating
specification of the load bearing ability of components with
arbitrary geometry.

2. Materials and methods

2.1. Specimen design and fabrication

The sequential failure chain concept for high-throughput
tensile testing of MEMS components has been depicted else-
where [2]. Briefly, 20 test specimens are connected in series,
forming a slack chain. One end of each specimen is fixed to the
substrate, while the other end is connected to the remainder of
the chain through a series of linkage elements. A force Fapp is
initially applied to the free end of the chain. The force is at first
only supported by the first tensile specimen (figure 1(a), top).
Fapp is increased until fracture of this first specimen and slack
is then taken up in the first linkage element and Fapp is trans-
ferred to the second tensile specimen (figure 1(a), middle).
Fapp is increased again until fracture of the second specimen
and slack is taken up by the second linkage element (figure
1(a), bottom). This process is repeated sequentially until all
specimens in the chain are broken. In this method, ≈1000
specimens can be independently, sequentially, and unambigu-
ously tested in ≈16 h.

An array of slack-chain tensile specimens was fabricated
using the SUMMiT V™ process flow (reticle set RS723); a
scanning electron microscopy (SEM) image of several com-
pleted chains is shown in figure 1(b). The fabrication process
entailed depositing, patterning, and etching four polysilicon
layers separated by three sacrificial silicon dioxide layers; in
this study, the tensile specimens were formed only in the third
polysilicon layer (poly3), such that the layer-to-layer strength
variability observed in previous studies was eliminated [4, 10].
Individual die were then released using an HF-based etchant,
dried using a super-critical CO2 procedure, and coated with a
silane-based anti-stiction monolayer [13]. Four different test
specimen geometries were formed in the poly3 layer, each
with a different maximum width D, minimum width d, and
shoulder radius r as shown in figures 1(c)–(f). The specimen
names and nominal dimensions (D, d) for the four shoulder
fillet geometries were S1 (20 µm, 2 µm), S2 (4 µm, 2 µm),
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Figure 1. Specimen design and fabrication. (a) Schematic representation of the slack-chain concept for high-throughput tensile testing.
(b) SEM image of completed chains fabricated using the SUMMiT V™ process. (c)–(f) High-resolution SEM images of the four different
specimen geometries before testing, each with a different D, d, and r as shown in the insets.

S3 (2 µm, 1 µm), and S4 (2.25 µm, 2 µm). All geometries
were designed with 90◦ angles at the interface between the
maximum and minimum widths, such that the ensuing r were
dictated by the fabrication process. The length L of each speci-
men was ≈20 µm and the shoulder fillets were located in the
middle of the gauge region. The nominal thickness h of the
poly3 layer was 2.25 µm. All specimens were fabricated in
a single reticle set, ensuring that the microscopic features (i.e.
f (c) and∆L) remained invariant as the macroscopic shape (i.e.
D, d, and r) was changed.

2.2. Strength testing

Strength testing was performed by extending the pull-tab
ring at the end of each chain with a custom-built MEMS
mechanical probe station and recording applied force Fapp as
a function of time t [2, 4]. The mechanical probe station is
depicted schematically in figure 2(a) and pictorially in fig-
ure 2(b). The MEMS test structures, typically located on a
3 mm × 8 mm die, were centered under the probe station on
an aluminum sample stage with a vacuum chuck. The sample
stage was in turn fixed to a two-axis motion controller to
facilitate horizontal movement of the stage and sample with
respect to an optical microscope fixed in the station; the micro-
scope included long working-distance lenses and a camera. An
independent three-axis motion controller with 0.1 µm resol-
ution linear displacement encoders was fixed to the sample
stage and used as the drive actuator for mechanical testing.
External force sensing was performed using a 1 N load cell
with 6 µN force resolution. A tungsten probe was attached
to the end of the load cell to engage the pull-tab rings. The
probe tip was machined with a focused ion beam tool into a

cylindrical geometry (inset in figure 2(a)). The probe-tip dia-
meter was designed to be slightly smaller than the pull-tab dia-
meter to enable a robust connection to the rings. The probe-tip
end was designed to be flat and parallel to the die surfaces to
eliminate frictional forces observed in previous designs [14].
All probe station functionality was directed via custom soft-
ware.

A typical Fapp-t trace obtained by the mechanical probe
station is shown in figure 2(c) and examples of failed S1 to
S4 specimens are shown in figures 2(d)–(g). In most cases,
only the first 18 or 19 tensile tests were conducted, such that
the chain remained connected to the substrate after testing.
Ff was taken to be the maximum force for each specimen
trace just prior to fracture. The stress in the small gauge sec-
tion at fracture σg is given by σg = Ff/(dh), where dh is
the cross-sectional area of the minimum width. It is import-
ant to note that σg ̸= σf. The shoulder fillets in each speci-
men locally enhanced the stress to values greater than that
in the small gauge. The enhancement is characterized by a
SCF, Kt. As such, σf was calculated by σf = KtFf/(dh), where
Kt was determined from the shoulder fillet dimensions and
SCF equations obtained by the body force method [15, 16].
The advantage of using numerical SCF equations [16] over
conventional SCF tables [17] is the ability of equations to
assess Kt for any fillet geometry. The uncertainties in Kt from
dimensional dispersions were a few percent of the mean val-
ues, comparable to the errors in the numerical solutions for
Kt [16].

The number of strength tests N in each group of specimens
of different geometry varied from 133 to 170 as shown in table
1. The Ff, σg, and σf data were used to form empirical distribu-
tion functions (edfs) for each of the component geometries. Ff,
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Figure 2. Mechanical probe station and strength testing. (a) Schematic representation and (b) picture of the custom-built MEMS
mechanical probe station. (c) Typical Fapp-t profile for 20 sequential tests; Ff was taken to be the maximum force of each trace just before
fracture. (d)–(g) High-resolution SEM images of the four different specimen geometries after testing, each depicting failure at or near the
shoulder fillet region as shown in the insets.

Table 1. Number of specimens, maximum widths, minimum widths, and shoulder radii for the four shoulder fillet geometries. Uncertainty
values are one standard deviation of the mean from at least ten specimens.

Specimen Type Number of Specimens, N Maximum Width, D (µm) Minimum Width, d (µm) Shoulder Radius, r (µm)

S1 133 19.32 ± 0.06 1.91 ± 0.02 0.54 ± 0.02
S2 162 3.85 ± 0.03 1.90 ± 0.03 0.55 ± 0.03
S3 170 1.89 ± 0.03 0.90 ± 0.02 0.58 ± 0.02
S4 153 2.14 ± 0.02 1.89 ± 0.02 3.04 ± 0.04

σg, and σf in each group were ranked from smallest to largest,
such that i was the rank value and Pi = (i − 0.5)/N was the
rank parameter. The discrete functions P(Ff), P(σg), and P(σf)
for each geometry were group-specific edfs, providing discrete
estimates of the continuous cumulative distribution functions
(cdfs) sampled from the larger material population.

2.3. Strength distribution and flaw population analysis

P(σf) for each group was fit with the continuous and bounded
sigmoidal smoothing function

F(µ) = 30
[(
µ3p/3

)
−
(
µ4p/2

)
+
(
µ5p/5

)]
, (1)

where

µ= (σ−σmin)/(σmax −σmin) (2)

is the relative strength position within the F(µ) domain [9].
σmin and σmax are empirical fitting parameters that define
the lower and upper limits of the smoothing domain and p

represents an empirical fitting parameter of order unity that
controls the sigmoid symmetry. The key benefits of equations
(1) and (2) over other smoothing functions such as theWeibull
description include boundedness at the limits (F(0) = 0,
F(1) = 1, F′(0) = F′(1) = 0) and separation of shape from
the properties of the bounds (p changes the shape of the sig-
moid independently of σmin and σmax) [9]. It is important to
note that σmin and σmax are group-specific parameters that
vary with component size, geometry, and loading, in con-
trast to the intensive characteristics of threshold strength σth

and upper limit strength σu of the overall strength population.
However, if the number of strength-limiting flaws in a com-
ponent k is small (k → 1) and the number of strength tests
N is large (N → ∞), the group-specific parameters converge
to the population-invariant intensive parameters (σmin → σth,
σmax → σu). Thus, high-throughput testing of components
with notches or fillets (i.e. components with large SCF that
limit the failure location to a small area) can be used to assess
the flaw-size pdf f (c).

The P(σf) functions for each group given by equations (1)
and (2) were used to estimate the flaw-size pdf f (c) and flaw
spacing ∆L. For the flaw-size pdf f (c), F(µ) can be related to
the intensive flaw-size cdf F(c) by
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F(c) = [1−F(µ)]∆L/L
, (3)

where (as defined above) ∆L is the spatial separation of flaws
in the population and L is the length of the specimens in the
group [8, 9]. It is noted that the ratio L/∆L gives the aver-
age number of flaws/specimen, L/∆L = k, and that F(c) and
F(µ) are related by this ratio, equation (3). For the double
edge-notched specimens previously, k = 2 was used in equa-
tion (3), as specimen failure was determined by the two
strength-controlling sidewall flaws at each notch root [10]. In
implementing equation (3) here, k = 2 is also used for the S1
data, consistent with the expectation that specimen failure is
determined by the two strength-controlling sidewall flaws at
each shoulder with large SCF [4, 5, 10]. The usage of equa-
tion (3) requires a relationship between strength and flaw size,
here taken to be the Griffith equation

σ = Bc−1/2, (4)

where B is a constant involving toughness, set by the material,
and flaw geometry and residual stress state, set by the manu-
facturing process [18]. Recent work concluded that the nature
of the flaws occurring as polysilicon component sidewall fea-
tures was somewhat different than simple Griffith cracks [10],
and was consistent with both small, rounded grooves with no
discernable crack tip [4, 5] and small cracks at the roots of
rounded grooves [19]. Inclusion of more complex flaw geo-
metries can be incorporated into the analytical framework
through modifications to the Griffith equation via different
power-law relationships for strength, but come with the added
burden of finite element calculations and experimental data on
the groove dimensions. Once the intensive cdf F(c) is determ-
ined, f (c) can be obtained from

f(c) = dF(c)/dc. (5)

In this case, F(c) was estimated from a fit of F(µ) to the exper-
imental data from the S1 specimens.

To determine flaw spacing ∆L, equation (3) was extended
to consider two specimen groups of different lengths L1 and Ln.
The groups were sampled from the same flaw population f (c),
but revealed different strength distributions F1(µ) and Fn(µ),
such that the flaw-size cdfs for the groups were given by

F(c) = [1−F1 (µ)]
∆L/L1 (6)

and

F(c) = [1−Fn (µ)]
∆L/Ln . (7)

The two flaw-size cdfs in equations (6) and (7) were then com-
bined to eliminate ∆L to arrive at

Fn (µ) = 1− [1−F1 (µ)]
(Ln/L1). (8)

This relationship enabled distribution F1(µ) from specimens
of length L1 to define distribution Fn(µ) from specimens of

length Ln via the length scaling factor Ln/L1, where n = 2,
3, and 4 for specimens S2, S3, and S4. More specifically,
equation (8) was fit to the strength data for the S2, S3, and
S4 specimens using the fit for the S1 specimens from equa-
tion (1) as a basis and L2/L1, L3/L1, and L4/L1 as the fit-
ting parameters. In previous work on notched and tensile spe-
cimens [10], the experimentally determined length scaling
factors Ltensile/Lnotch were used to assess ∆L through the rela-
tion ∆L = (20Lnotch/Ltensile) µm, which was established by
recognizing that Lnotch = 2∆L for the notched specimens and
Ltensile = 40 µm for the tensile specimens. However, there are
no specimen geometries in this work with defined lengths over
which the flaw population is active (i.e. tensile specimens),
precluding the direct assessment of ∆L from the length scal-
ing factor. Instead,∆Lmeasurements for the poly3 layer from
previous work were used for comparison with stress distribu-
tion diagrams from finite element analysis (FEA) simulations
around the shoulder fillet regions and to generate scaled dia-
grams of specimens. The diagrams enabled a quantitative com-
parison of the spatial separation of surface flaws and the spatial
extent of the stress fields.

2.4. Monte Carlo simulations

The quantitative characteristics of the flaw size distribution
and mean spacing of the flaw population, f (c) and ∆L, were
used to simulate the surfaces of the shoulder fillet regions via
Monte Carlo methods. The flaw sizes were selected randomly
from f (c) as assessed from S1 specimens. The flaw spacings
were sampled from a uniform ∆L distribution with a mean of
0.57 µm and range of ± 0.48 µm about the mean; this distri-
bution is consistent with the mean spacing and uncertainty for
the poly3 layer as determined in previous work [10]. The out-
lines of the specimenswere described by piecewise continuous
arc and straight sections matched to the fillet radii and gauge
widths of the S1 and S2 specimens and by single continuous
functions matched to the fillet lengths and gauge widths of the
S3 and S4 specimens. Specimen dimensions in the schematic
diagrams are to scale. The flaws are denoted as straight lines
and omitted from non-tensile surfaces. Many simulations were
conducted and those presented are typical.

2.5. FEA simulations

FEA on the S1 to S4 geometries was performed using
ABAQUS [20]. The specimen lengths were chosen to provide
far field loading conditions of uniform tensile stress; the max-
imum and minimumwidth sections had lengths 5× larger than
their respective widths. The specimens were also treated as
plate-like with small deformations; linear plane-stress con-
stitutive laws were used here, such that the results are directly
comparable to the body force method results from previous
work [16]. The maximum width sections were fixed axially,
but unconstrained laterally to allow for Poisson contractions.
The minimum width sections were loaded axially with unit
stress so the maximum principal stress contours were identical
to SCFs. Adaptive meshing of second-order triangles (CPS6
elements) verified that models converged to 0.1% using the
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representative von Mises stress error. von Mises error is not
physically relevant to brittle fracture, but it is numerically rel-
evant as it quantifies overall stress error for multiaxial stress
states. Local SCFs were plotted for the S1 to S4 geometries.

3. Results

3.1. Specimen geometry and fracture behavior

The specimen geometries resulting from fabrication were
characterized using high-resolution SEM images (insets in
figures 1(c)–(f)) of the shoulder fillets prior to mechanical
testing. The mean values and standard deviations for D, d, and
r from analysis of at least ten specimens are given in table
1. From the mean values, it was revealed that D and d were
slightly less than the nominal values for S1 to S4; the sys-
tematic decrease in both dimensions was due to a linewidth
loss of ≈0.05 µm per edge during etching. Moreover, the
SEM images showed that r were similar for S1 to S3 but
increased markedly for S4; the deviation for S4 was likely due
to an inability to obtain small r with similar D and d during
patterning. Interestingly, the radii presented herein for poly-
silicon were significantly larger than those in previous work
for single-crystal silicon [21], despite both studies using sharp
90◦ corners in their respective designs. The differences in r
were due to the disparate fabrication processes; the polysilicon
components were formed via reactive ion etching, whereas the
single-crystal silicon components were formed by anisotropic
etching of epitaxial silicon. From the standard deviations, it
was demonstrated that the dimensional dispersions were only
a few percent of the mean values and akin to sidewall surface
roughness. The roughness is due to etching or grain boundary
grooving during thermal and chemical steps in the fabrication
process and gives rise to dimensional dispersions in all spe-
cimens. The fact that dimensional dispersions were mainly
from surface roughness and not variability in the fabrication
processes is a testament to the specimen-to-specimen reprodu-
cibility of the process flow. Parametric monitoring during fab-
rication with this reticle set generated an average h of 2.33 µm.

The fracture behavior was characterized using the Fapp-t
profiles (figure 2(c)) during mechanical testing and high-
resolution SEM images (insets in figures 2(d)–(g)) of the
shoulder fillets after mechanical testing. From the Fapp-t trace,
it is clear that the loading behavior was linear, implying brittle
failure by the propagation of a single crack. On occasion, mul-
tiple specimens broke simultaneously or a single specimen
broke outside the shoulder fillet and gauge sections, leading
to large erratic excursions or aberrant Ff values in the Fapp-t
trace, respectively. Such anomalous behavior was attributed
to shock transmission between specimens during fracture and
premature failure in other sections of the slack-chain; the cor-
responding data were omitted from further analyses. From the
high-resolution SEM images, it was found that failure typic-
ally occurred at or near the shoulder fillet region. More spe-
cifically, the S1 and S2 specimens failed solely in the shoulder
fillet region, while the failure region for the S3 and S4 speci-
mens extended into the small gauge section. Fractography of
broken specimens revealed that fracture initiated at sidewall

surface features that were likely formed from preferential etch-
ing of grain boundaries [4–6, 10]. Furthermore, the fracture
surfaces exhibited hackle lines and preferred cleavage planes,
typical features for polysilicon [2, 4] and single-crystal silicon
[22, 23].

3.2. Force, stress, and strength distributions

The component failure force edfs P(Ff) for the four differ-
ent specimen geometries are shown in figure 3(a). The sym-
bols represent fracture force values from individual speci-
mens. The failure force edf curves were sigmoidal in shape and
clearly distinguishable. For a givenP(Ff), theFf quantiles (e.g.
median) decreased in the following specimen order: S4, S2,
S1, and S3. In other words, the Ff values decreased initially as
D increased at a constant d and then again as d decreased. The
stress edfs P(σg) for the four different specimen geometries
are shown in figure 3(b). Again, the symbols represent gauge
section stress values from individual specimens. The stress edf
curves were distinguishable, but rearranged, with respect to
figure 3(a). For a given P(σg), σg decreased in the following
specimen order: S4, S3, S2, and S1. As such, the σg at failure
decreased as SCF increased. Finally, the fracture strength edfs
P(σf) for the four different specimen geometries are shown in
figure 3(c). The strength edfs were reordered with respect to
figures 3(a) and (b), such that the σf curves for the S1 and S2
specimens were nearly identical, but then shifted to smaller σf

values for the S3 and S4 specimens.
Two important trends are clear from figure 3(c): (1) The

minimum strength of each distribution was invariant, such that
changes in specimen geometry led to a contraction of distribu-
tions towards the minimum and (2) The distribution contrac-
tion was greater (i.e. the width of the distribution was smaller)
as the specimen SCF decreased. Both trends are explained via
‘weakest-link’ arguments, in which a chain (several elements
in a component) is only as strong as its weakest link (a single
element from the population) [8]. Both component and popula-
tion strength distributions are terminated by a single threshold
strength associated with the maximum flaw size. As such, the
threshold strength is invariant with the number of links in the
chain, or more explicitly, the size of the component. For large
components, there is a large probability that most components
in a group contain flaws of near maximum size and thus the
group exhibits a contracted strength distribution adjacent to
the threshold. As component size decreases, the probability
increases that some components contain strength-controlling
flaws smaller than the maximum size and the strength distribu-
tion broadens. The inference from figure 3(c) is that the broad,
nearly identical strength distributions for the S1 and S2 spe-
cimens are consistent with similar, small effective component
sizes and the contracted distributions for the S3 and S4 speci-
mens are consistent with larger effective sizes.

3.3. Flaw size distribution and length scaling factors

The flaw size distribution was calculated from the P(σf)
strength response of the S1 specimens in figure 3(c). In more
detail, f (c) was determined from the F(µ) best fits to the P(σf)
data, using B = 0.75 MPa m1/2 for silicon [7] and equations
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Figure 3. Force, stress, and strength distributions. (a) P(Ff), (b) P(σg), and (c) P(σf) for the four different specimen geometries. The
symbols represent individual tests and the lines represent best fits to the data using equation (1) for the S1 specimens and equation (8) with
Ln/L1 as the fitting parameter for the S2, S3, and S4 specimens.

Figure 4. Flaw size distribution and length scaling factors. (a) f (c) pdf from the best fit to the data for the S1 specimens with ∆L/L1 = 1/2.
(b) Length scaling factors as a function of stress concentration factors. SCFs were determined with the body force method and Ln/L1 were
calculated with best fits to the strength data for the S2, S3, and S4 specimens. Tensile (Kt = 1) and notched (Kt = 2.45) data are also shown
for reference.

Table 2. Stress concentrations and length scaling factors for the four shoulder fillet geometries. SCFs were determined using both a body
force method and FEA, whereas Ln/L1 were calculated using best fits to the strength data for the S2, S3, and S4 specimens.

Specimen Type Body Force Method SCF, Kt Finite Element Analysis SCF, Kt Length Scaling Factor Ln/L1

S1 1.84 1.86 −
S2 1.72 1.77 1
S3 1.40 1.42 4
S4 1.15 1.15 21

(3)–(5) with ∆L/L = 1/2. The resulting flaw-size pdf f (c) is
shown in figure 4(a). The pdf is asymmetric, consisting of a
prominent peak at flaw sizes ranging from 20 nm to 30 nm
and an extended tail to sizes of 70 nm. The asymmetric char-
acter of the distribution in figure 4(a) is in good agreement
with previous studies on flaw populations in micro- and nano-
scale silicon components [4, 8, 10] and other ceramic materi-
als [9]. The asymmetry in the pdf derives physically from the
fact that c ~ σ¯¹/² as dictated by equation (4) and is enhanced
mathematically by taking the derivative to form the pdf from
the cdf as defined by equation (5). The domain of flaw sizes
is nearly equivalent to results from another reticle set for the
poly3 layer [10], demonstrating reticle-to-reticle reproducib-
ility in the fabrication process.

The length scaling factors were evaluated from the P(σf)
data for the S2, S3, and S4 specimens in figure 3(c). More
specifically, the P(σf) data for the S2, S3, and S4 specimens
were fit to equation (8), using the fit for S1 specimens from
equation (1) as a basis and L2/L1, L3/L1, and L4/L1 as the fit-
ting parameters. The lines in figure 3(c) represent the best fits
to the data and describe the strength variations well over the
entire range, consistent with the existence of a single flaw pop-
ulation in all of the shoulder fillet specimens. The resulting
length scaling factors are shown in figure 4(b) and listed in
table 2, both as a function of the SCF values from the body
force method calculations. In general, it was found that the
length scaling factor was initially constant and then increased
as SCF decreased. The change in trend is related to a change
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Figure 5. Monte Carlo and FEA simulations. (a)–(d) Monte Carlo simulations of the flaw size and spacing distributions in the shoulder
fillet regions for the (a) S1, (b) S2, (c) S3, and (d) S4 specimens. Flaw sizes and spacings were selected randomly from f (c) and a uniform
∆L distribution, respectively. (e)–(h) FEA of the shoulder fillet regions for the (e) S1, (f) S2, (g) S3, and (h) S4 specimens. The minimum
width sections were loaded with unit stress so the maximum principal stress contours were identical to SCFs. SCFs (black lines) and
changes in SCFs with position (red lines) were plotted along the sidewall surfaces.

in the stress concentrating effects of the shoulder fillets and
can be described in terms of the three regions shown in figure
4(b). In region 1 (Kt ≥ 1.4), L2/L1 = 1, suggesting the SCF
is large enough to ensure failure from a single flaw on one
of the two shoulder surfaces. The notched bars from previous
work fall into the upper end of this regime [10], whereas the
S1 and S2 shoulder fillet specimens presented here fall into
the lower end of this regime. In region 2 (1.0 < Kt < 1.4),
the SCF decreases to less than a threshold value, such that the
length scaling factor increases to L3/L1 = 4 for S3 specimens
and L4/L1 = 21 for S4 specimens. These increases suggest
that a decrease in SCF extends the effective length over which
strength-limiting flaws are active. The trend continues until the
shoulder fillets are completely removed; previous work repor-
ted a length scaling factor of 35 for poly3 tensile bars [10]. In
region 3 (Kt = 1.0), the length scaling factor can decrease or
increase with the length of the tensile bar, approaching 1 as
L→∆L and ∞ as L→∞.

3.4. Monte Carlo and FEA simulations

The schematic diagrams in figures 5(a)–(d) represent the sur-
faces of the shoulder fillet regions as determined from the

Monte Carlo simulations. The shoulder fillet outlines were cre-
ated from the nominal dimensions in table 1, and perturbed
using flaw sizes selected randomly from the f (c) distribution
in figure 4(a) and flaw spacings selected randomly from a uni-
form ∆L distribution (0.57 µm ± 0.48 µm). The scaled dia-
grams facilitate a quantitative assessment of the flaw size dis-
tribution and length scaling factors relative to specimen geo-
metry. For the flaw size distribution, the pdf was asymmetric,
exhibiting a prominent peak at sizes between 20 nm to 30 nm
and an extended tail to 70 nm as shown in figure 4(a). Hence,
the values of c were only a few percent of the mean values
of d for all four geometries, and therefore represented only
a small reduction in the minimum width. For the length scal-
ing factors, the factor was initially constant and then increased
as SCF decreased as shown in figure 4(b). For S2 specimens,
∆L ≈πR/2 and L2/L1 = 1, suggesting that the average flaw
spacing was nearly equivalent to the shoulder fillet arc length
(i.e. on average, there was only a single flaw on each fillet)
and failure initiated at one of these two flaws (i.e. due to the
enhanced SCFs in the fillets). For S3 specimens, ∆L ≈πR/2
and L3/L1 > 1, indicating that there was still only a single
flaw on each fillet, but that fracture was not limited to these
flaws (i.e. the effective length of the specimen extended bey-
ond the shoulder fillet into the minimum gauge width). This
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increase in length was responsible for the occasional failure in
the small gauge section as shown in figure 2(f) and the smal-
ler σf values in figure 3(c). For S4 specimens, ∆L < πR/2
and L4/L1 > 1. In this case, there were numerous flaws on
each fillet and the effective length extended well beyond
the shoulder fillet region. This triggered failures in the min-
imum gauge section and contracted the σf distribution to even
smaller values.

The contour maps in figures 5(e)–(h) represent the max-
imum principal stresses (or the SCFs, given that the minimum
width sections were loaded axially with unit stress) in the
shoulder fillet regions as determined via FEA simulations. The
contour maps facilitate a quantitative assessment of the stress
distributions relative to specimen geometry. From the maps, it
was clear that all four geometries had stress concentrations in
the shoulder fillet regions, with the magnitude of the concen-
trations dependent on the specimen geometry. The maximum
SCFs from the FEA simulations are shown in table 2. The data
suggested that SCF decreased as the geometry changed from
the S1 to the S4 specimen. In fact, results from the FEA simu-
lations were in excellent agreement with those from the body
force method; the mean values in Kt were found to be statistic-
ally similar given the uncertainties inKt from dimensional dis-
persions [10] and numerical errors [16]. SCF traverses along
the sidewall surfaces as a function of position s are also shown
in figures 5(e)–(h). Both SCFs (black lines) and derivatives of
SCFs with s (red lines) are shown. The gray bands are com-
mon to each plot, indicate the largest likely flaw separation in
these specimens (≈0.96 µm), and are centered on the derivat-
ive maximum. The SCF derivative trends in comparison with
the flaw separations showed that certain aspects of the rate of
change in SCF with s correlated well with the length scaling
factor trends. In particular, the width of the derivative peak
was initially well contained in the flaw separation band for the
S1 and S2 specimens and then spread beyond this band for the
S3 and S4 specimens. The significant increases in SCF for the
S1 and S2 specimens localized fracture to the shoulder fillet
regions (i.e. L2/L1 = 1), while the gradual decreases in SCF
for the S3 and S4 specimens increased the likelihood of fail-
ure in the minimum width section (i.e. L4/L1 > 1).

4. Discussion

A major goal of this work was to provide a clear linkage
between the requirements of the MEMS designer and the
MEMS fabricator. Designers require different distributions of
sustainable forces for MEMS components of various geomet-
ries. Fabricators require methods to optimize material intens-
ive distributions of strength-controlling flaws in MEMS com-
ponents from identical processing. The goal of linking these
two requirements was demonstrated here using the failure
characteristics of polysilicon MEMS components with vari-
ous fillet geometries formed into sequential chain tensile test
structures in identical processing steps. The fillet geometries
generated a range of stress concentration effects that provided
an intermediate gradation between the extremes of the notched

and smooth bar tensile geometries studied earlier [10]. In addi-
tion to demonstrating the connection between failure force and
flaw distributions mediated by component geometry (section
3 above), the range of geometries also verified and extended
the earlier analyses (see discussion above and figure 4(b)).
Physically, the demonstrations were in accordance with phys-
ical intuition: (1) Smaller components with large stress con-
centrations exhibited smaller failure force distributions that
werewell separated from the failure force distributions of large
components with small stress concenrations and (2) Geometry
effects were manifest as contractions of strength distributions
adjacent to a minimum strength threshold common to all com-
ponents, consistent with weakest-link arguments.

Mathematically, the demonstration implements an analysis
in which the key independent elements can be clearly identi-
fied. Combining the above equations enables the distribution
of failure forces for a group of components of fixed geometry
H(Ff) to be expressed in terms of the underlying invariant flaw
population f (c)

H(Ff) = 1−

[
(BA/KtFf)

2

∫
cmin

f(c)dc

]L/∆L

. (9)

The fracture resistance of the material and the nature of the
flaw are encapsulated in B: for simple Griffith flaws, B can be
identifiedwith thematerial toughness. The size of the compon-
ent is encapsuslated in A, an effective gauge cross-sectional
area, and L, an effective gauge length. The shape of the com-
ponent is encapsulated inKt, the SCF of themost extreme vari-
ation of component outline. The flaw population is encapus-
lated in the minimum flaw size cmin, the flaw size pdf f (c),
and the average flaw spacing ∆L. The bounds on the domain
of H(Ff), Fmin ⩽ Ff ⩽ Fmax, depend on the fracture resistance
parameter B, and inversely on the bounds on the flaw popu-
lation cmin and cmax, as does strength [8–10]. Distinct from
strength, the failure forces also depend on component geo-
metry parameters A and Kt as

Fmin = BA/Ktc
1/2
max, (10)

and

Fmax = BA/Ktc
1/2
min. (11)

As a consequence, although the strength domain is intens-
ive and strength distributions contract to a fixed threshold as
component geometry is varied (figure 3(c)), the failure force
domain is extensive and varies with component geometry
(figures 3(a) and (b)). Fabrication choices determine B, f (c),
and ∆L. Design choices determine A, L, and Kt. Equations
(9)–(11) make the engineering linkage explicit in the determ-
ination of failure forces. Proof testing artificially engineers
f (c) through non-fabrication means by exposing components
to Fproof > Fmin, such that the flaw population is truncated at
cproof < cmax [24].

It is important to note that as f (c) is specified separately
from the specimen size parameters A and L in equation (9), any
flaw population function can be used to describe size effects,
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including common descriptions such as the Weibull, normal,
and (as here) Beta functions. This point has been discussed in
detail by Zok [25] and elsewhere [8]. It is also important to
note that the exponent in equation (9) is specified separately
from the terminals of the integral, such that any relationship
between flaw size and strength, including non-linear and (as
here) linear fracture mechanics relations, will exhibit a size
effect. This point was briefly considered by Reedy et al [5]
and elsewhere [9]. As a consequence of this separate specific-
ation, it is implicit in developing equation (9) that all flaws
in a test component are exposed to the same stress and stress
concentration. This condition may not be so in large-grained
materials or materials with wide grain size distributions, in
which elastic anisotropy and balances between intergranular
and transgranular fracture may influence the values of Kt and
B from specimen to specimen. This effect has been studied
by Corigliano and colleagues [26, 27]. Similarly, it is impli-
cit in equation (9) that all specimens contain the same dens-
ity of flaws, that is, that ∆L is fixed for a sample group. If
∆L varies from specimen to specimen, the failure load distri-
bution of the sample group H(Ff) is perturbed, although the
threshold remains fixed. This effect has been studied by Xu et
al [28]. Forward analyses of flaw populations can show this
easily, but reverse analyses of strength distributions (as here)
cannot discern the effect as experimental strengths only sense
the single, largest flaw in an entire specimen without regard
for flaw density. More broadly, although the experimental data
support the assumption of flaw independence imbedded in
equation (3) leading to equation (9)—widely separated small
flaws [8–10]—this is certainly an issue for small-scale MEMS
components and has been considered by Xu et al [28] and
Todinov [29].

5. Conclusions

An analytical framework developed to describe the strengths
of smooth and notched MEMS tensile bars is applicable to
the failure forces of stepped bars with shoulder fillets. A crit-
ical element in the application is the use of the correct SCFs
for the fillet geometries. Here, SCFs determined by an ana-
lytical body force method were verified by FEA, providing
confidence in application of the analytical SCF expressions
to other MEMS components in which the common and crit-
ical shoulder fillet geometry is failure controlling. The exten-
sion of the weakest-link-based framework to another geometry
provides further empirical support for the mathematical struc-
ture and the linkages and distinctions between flaw popula-
tions and sampled strength distributions. An additional crit-
ical element in the overall failure force prediction procedure
is the ability to measure the detailed shape and location of
strength distributions: High throughput test methods applied
to identically-fabricated specimens provide such an ability and
was demonstrated here with the slack-chain geometry capable
of measuring strengths of hundreds of specimens. Lastly, it
was found that the shoulder fillet radii for polysilicon com-
ponents were markedly larger that those previously reported

for single-crystal silicon due to differences in the fabrica-
tion processes. The larger r result in smaller SCFs for similar
designs, suggesting that parametric studies linking fabrication
parameters to component geometry are required to fully elu-
cidate the load bearing ability of MEMS. In all, MEMS fail-
ure prediction is well advanced, both analytically and experi-
mentally, and has overcome many of the limitations [7] noted
previously.
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