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Abstract
A procedure is outlined for determining the population of flaws in manufactured

ceramics from strength measurements of sampled components. The broad applica-

bility of the procedure is demonstrated in a quantitative manner, using strength mea-

surements from a range of ceramic materials (eg, glass, glass‐ceramic, single crystal,

and polycrystal) with different flaw types (eg, bulk, surface, and edge). The decon-

voluted flaw populations are mostly dominated by small flaws with extended large

flaw tails and are all in domains of tens of micrometers. The procedure greatly

extends the useful information to be gained by ceramics manufacturers and design-

ers from strength distribution measurements and emphasizes the importance of iden-

tifying strength‐limiting characteristics within a flaw population.
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1 | INTRODUCTION

Manufacturing processes for load‐bearing components or
materials are optimized to fabricate components that can bear
the greatest load or materials that exhibit the greatest
strength, subject to the constraints of cost, weight, timeliness,
environmental impact, etc.1 In particular, manufacturing pro-
cesses for many structural ceramics optimize brittle fracture
strength by minimizing the number and magnitude of
strength‐limiting flaws, usually cracks, in the ceramic. In
addition to optimizing strength, information regarding cera-
mic flaw populations is also critical: to optimize yield in
manufacturing, if flaws are defects that limit the strength of
manufactured components; to estimate reliability in use, if
flaws become defects that limit the lifetime of operational
components; and, to extrapolate design parameters, if flaws
limit size or shape of innovative components. A common
method of assessing the population of flaws in a manufac-
tured ceramic material is to measure the distribution of frac-
ture strengths in a group of components sampled from the
material. Usually, the group consists of specially formed
components (eg, bend bars) comprising a small volume of
test material sampled (eg, by sawing) from the larger entirety

of manufactured material volume. Manufacturers usually
seek to minimize cost and maximize timeliness by minimiz-
ing the sampled volume relative to the manufactured material
volume. Hence, there is a commercial driving force to obtain
as much information as possible regarding the population of
flaws imbedded in an entire volume of manufactured ceramic
from the distributions of strengths characterizing the much
smaller volumes of sampled test components.

A recent work2 considered in some detail the relationship
between the flaw population in a volume of manufactured
material and the strength distribution exhibited by a sampled
group of test components. The relationship was considered
in two ways: (a) a “forward” direction, in which a known
flaw population was used to predict resulting strength distri-
butions based on the volume and number of the test compo-
nents; and, (b) a “backward” direction, in which an empirical
component strength distribution was used to infer the under-
lying material flaw population. The sensitivity of both for-
ward predictions and backward inferences to the number of
measurements and the ratio of (sample volume)/(manufac-
tured material volume) were highlighted, especially the influ-
ences of these factors in fully characterizing flaw
populations from strength distribution parameters. Attention
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was focused on deconvoluting strength distributions of ultra‐
small components formed by chemical etching or growth
processes (ie, microelectromechanical systems [MEMS]
devices and nanowires) to infer nano‐scale flaw population
characteristics. Strengths of a few gigapascals up to a few
tens of gigapascals were used to examine cracks a few tens
of nanometers in size down to about a nanometer.

Here, a similar methodology is applied to deconvolute
strength distributions of a wide range of ceramic compo-
nents and determine micro‐scale flaw populations. Mechan-
ical (eg, polishing, sawing, sharp contact) and thermal (eg,
sintering, heat treatment) processes often encountered in
ceramic manufacturing are considered. As noted in a
review of MEMS strengths,3 different surface treatments
(eg, chemical and mechanical) used to manufacture compo-
nents of different scales usually generate brittle fracture
strength‐controlling surface flaws of systematically different
magnitudes. For example, mechanically formed compo-
nents are typically larger than chemically formed compo-
nents and contain larger surface flaws. Similarly, thermally
formed components are large and contain large strength‐
controlling bulk flaws. Such correlations are well known in
engineering design, in which manufactured component tol-
erances and surface roughness scale with component size.1

Hence, the ceramic components to be examined here exhi-
bit micro‐scale flaw population characteristics. Strengths of
several hundred megapascals are examined, reflecting
underlying flaws tens of micrometers in size.

The work begins by developing the analysis required
to deconvolute flaw populations from strength distribu-
tions, extending that used previously2 to include ceram-
ics‐related considerations; a similar analysis was used to
connect flaw populations and component lifetimes in a
reliability context.4 The analysis is followed by a descrip-
tion of the ceramic materials and systems to be studied,
nine in all divided into four sets: cordierite, alumina, and
silicon components containing dominant polishing or
sawing flaws; glass, spodumene, and cordierite compo-
nents containing dominant sharp indentation contacts; sin-
tered silicon nitride components containing dominant
pores; and, heat treated fused and tabular refractory alu-
mina grains containing dominant voids. To optimize sta-
tistical assessment, each group of materials consists of
about 100 components. The results are then presented as
strength distributions and the conjugate flaw populations.
The discussion emphasizes the applicability of the out-
lined procedure in manufacturing.

2 | ANALYTICAL METHODS

The analysis is divided into two sections. In the first sec-
tion, an overall probabilistic framework is developed by

consideration of forward prediction, from an assumed large
population of flaws to strength distributions of sampled
groups of components. In the second section, the frame-
work is used in the reverse direction to use an experimen-
tally measured group of strengths to deconvolute an
underlying flaw population. A flexible smoothing function,
required to describe measured strengths in implementation
of the deconvolution procedure, is introduced in the second
section, along with different strength‐flaw size relationships
required for the different flaw types in the four materials
sets mentioned above.

2.1 | Strength distribution prediction

Analysis begins by considering a manufacturing process
that generates a ceramic, total volume Ω, containing a large
population of brittle fracture strength‐controlling features,
Figure 1A. The features have an average density (number/
volume) of λ. Such a density pertains to cases of strength‐
limiting features in the bulk of a ceramic (eg, pores in sili-
con nitride or internal voids in refractory alumina, see
below). In many brittle ceramics strength‐limiting features
occur preferentially on the damaged surface of a material
(eg, polishing scratches on cordierite or sharp contact
cracks on glass, see below) and it is useful to define a
characteristic dimension h that is the surface depth of the
damage. Ω/h is then interpreted as the area of the strength‐
limiting surface, Figure 1A and the product (λh) gives the
areal density (number/area) of strength‐limiting surface fea-
tures. In other cases, strength limiting features occur along
a damaged material edge (eg, silicon dicing damage or alu-
mina sawing damage, see below) and it is useful to recog-
nize h2 as an area that is the characteristic internal extent
of edge damage. The product (λh2) gives the lineal density
(number/length) of strength‐limiting edge features. The
reciprocals of the densities are somewhat more intuitive
and areal density is used here in examples. The reciprocal
of (λh) defines the area ΔA = 1/(λh). ΔA is chosen to be
sufficiently small (or λh sufficiently large) such that each
area ΔA contains exactly one feature arising from the man-
ufacturing process and ΔA thus defines a fundamental ele-
ment of area, Figure 1A,B. A magnitude of the features
relevant to strength varies from feature to feature. The pri-
mary intention and simplest interpretation is that the feature
magnitude is a physical length dimension, c, representing a
crack length that determines the local strength of the mate-
rial. c is thus referred to as a “flaw size.” (An obvious
dimensional limitation in this case is that, on average,
c≤ΔA1=2). Fundamental elements of volume and length
are analogously defined.2 Other flaw size magnitudes,
including dimensionless values, can also be used. For sim-
plicity, ΔA and c are used here, but, with important noted
exceptions, the following analysis is general.
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The population of elements, Ωλ, is considered sufficiently
large that the flaw sizes may be treated as a continuum and
thus there exists a continuous probability density function
(pdf), f(c), describing the flaw sizes over the domain cmin ≤
c ≤ cmax. f(c) can be considered as the fundamental property
of the population and cmin and cmax are the minimum and
maximum flaw sizes, respectively. Integration of the pdf
gives the cumulative distribution function (cdf), F(c),5

FðcÞ ¼
Zc

0

f ðc0Þdc0: (1)

F(c) gives the proportion of the population of elements
with flaw sizes smaller than c and is thus the probability
that an element selected at random from the population will
have a flaw size smaller than c. Normalization of the pdf
requires Zcmax

cmin

f ðc0Þdc0 ¼ 1 (2)

and, thus, F(c) increases from 0 to 1 over the domain
cmin ≤ c ≤ cmax. Equation (1) may be expressed as

f ðcÞ ¼ dFðcÞ
dc

(3)

enabling f(c) to be determined if F(c) is known. It is the
experimental estimation of f(c) that is a major focus of this
work.

The pdf and cdf functions given above, f(c) and F(c),
describe the population of flaw sizes. To make connection
with the distribution of component strengths, a relationship
between element strength and flaw size is required. As an
example, for an element containing flaw size c the strength
σ, Figure 1C, can be expressed by the Griffith relation6

σ ¼ Bc�1=2; (4)

where B is a constant with dimensions of [strength]
[length]1/2 involving the element toughness, set by the
material, and the flaw geometry and residual stress state,
set by the manufacturing process. A typical value for
B = 1 MPa m1/2, such that a flaw size of c = 25 μm corre-
sponds to a strength of σ = 200 MPa.6 Setting

σu ¼ Bc�1=2
min (5a)

gives the upper limit to the element strengths, σu, corre-
sponding to the minimum in the population flaw‐size distri-
bution. Similarly,

σth ¼ Bc�1=2
max (5b)

gives the lower limit to the element strengths, σth, corre-
sponding to the maximum in the population flaw‐size dis-
tribution. The lower bound to the strength, σth, is critical
for design and is known as the “threshold strength.”

The inverse relationship between strength and flaw size
leads to some subtleties in relating population and sample
quantities. The complementary cumulative distribution
function, ccdf, �FðcÞ, for the element flaw population is
related to the cdf by

�FðcÞ ¼ 1� FðcÞ (6)

and is the tail distribution: the cdf F(c) gives the probabil-
ity that an element selected from the population has a flaw
size smaller than c; the ccdf �FðcÞ gives the probability that
an element selected from the population has a flaw size >c.
Just as the cdf F(c) ranges between 0 and 1 over the
domain cmin ≤ c ≤ cmax, the ccdf �FðcÞ ranges between 1
and 0 over the same domain. FðσÞ and �FðσÞ may be simi-
larly defined, where FðσÞ gives the probability that an ele-
ment selected from the population has a strength <σ and
�FðσÞ gives the probability that an element has a strength
>σ and is commonly known as the “survivor function.”7

FðσÞ and �FðσÞ vary between 0 and 1 over the population
conjugate strength domain σth ≤ σ ≤ σu. The inverse rela-
tionship between strength and flaw size leads to reversed

FIGURE 1 Schematic diagrams of a volume of manufactured
material with strength controlled by surface flaws. A, The total
volume, Ω, indicating surface damage layer h and division into a
population of elemental areas. B, Enlargement showing elemental
areas ΔA containing surface flaws of size c. C, Measurement of
strength σ of an elemental area
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identification of the cdf and ccdf when c is substituted for
σ using Equation (4) (large strengths imply small flaws and
vice versa). In particular, Equation (6) becomes

FðcÞ ¼ �FðσÞ (7)

enabling F(c) to be determined if �FðσÞ is known, although
it will be shown that explicit determination of �FðσÞ is not
required in practice.

�FðσÞis the probability that a single fundamental element
selected randomly from the population will have a strength
>σ. If it is assumed that the elements (and thus their
strengths) are independent, the probability �F2ΔAðσÞ that two
elements selected from the population will both have
strengths >σ is given by the product of their probabilities
taken singly5

�F2ΔAðσÞ ¼ �FðσÞ � �FðσÞ:
Thus, if k elements form a single component of area A =
kΔA and are independent, the probability, �FAðσÞ, that all k
elements and thus the component have a strength >σ is

�FkΔAðσÞ ¼ �FAðσÞ ¼ �FðσÞk: (8)

If a group of many similarly formed components, all of
area A, is assembled, Figure 2, �FAðσÞ is the proportion of
components within the group that have a strength >σ. The
fundamental elements in the population defined above con-
tain single strength-limiting features or flaws (Figure 1)
and thus k is the relative size of a component in terms of
the number of strength‐limiting features (eg, k = 4 in Fig-
ure 2). The number of strength‐limiting features in a com-
ponent will usually be much less than the number of
observable features that are candidate flaws and k is thus
expected to be a small number, much less than the number
of observed pores, surface scratches, or edge chips.

The region of support and range of �FAðσÞ are identical
to those of �FðσÞ. The cdf of a strength distribution is com-
plementary to the ccdf, and thus the cdf for the group of
component strengths, FAðσÞ, is given by

FAðσÞ ¼ 1� �FAðσÞ ¼ �FðσÞk (9)

FAðσÞ is the probability that a component of area A has a
strength <σ, that is, the component will fail if exposed to a
stress of σ. If a group of many similarly formed compo-
nents is assembled, FAðσÞ is the proportion of components
within the group that will fail if exposed to a stress of σ
and is thus the sought prediction. The sequence of predic-
tion, from the specification of the fundamental population
flaw pdf, f(c), to the predicted sample strength cdf, FAðσÞ,
is Equations 1,4,7,9. The following section describes fac-
tors required to implement reversal of this sequence from a
measured strength distribution to the underlying flaw popu-
lation.

2.2 | Flaw population determination

A first step in using the above framework to determine a
flaw population is to recognize that an estimate of FAðσÞ is
required from the distribution of measured strengths. This
is made clear by combining Equations (7) and (9) to gain

FðcÞ ¼ ½1� FAðσÞ�1=k; (10)

which expresses the population flaw cdf in terms of the
sample strength cdf. Equation (4) is implicit. As quantities
from experimental measurements, σ and FA can only exhi-
bit discrete values. However, it is possible to estimate the
continuous cdf of the population by a discrete function of
the measured sample strengths. This function is termed the
“empirical distribution function” (edf) and uses a simple
ranking such that the function values are the fractions of
observations within a sample that have strengths less than
or equal to a specified strength. Operationally, for a sample
containing N components, the component strengths are part
of the sequence σi, in which the index i (or rank) runs from

FIGURE 2 Schematic diagram of strength measurements of a
group of identically sized components, surface area A (bold solid line)
consisting of several fundamental elements (k = 4 shown)
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1 to N. The sequence is ordered, such that σ1 is the small-
est measured strength and σN is the largest. The quantity
Pi = (i − 0.5)/N is formed for each strength; P1 is the
smallest number (near zero) and PN is the largest (near 1).
If a strength σi is selected from the ordered sequence, the
conjugate Pi value gives the proportion of N for which the
measured strengths are <σi: Pi(σi) thus provides a statistical
measure of FA(σ).

Direct substitution of Pi(σi) for FA(σ) in Equation (10)
provides a determination of discrete values of F(c), pro-
vided additional experimental factors such as σ(c) and k are
known or assumed. Such discrete determinations have the
advantage of representing as close to “raw data” as possi-
ble in flaw coordinates but have the extreme disadvantage
of difficulty of interpretation as such determinations are
one step removed from the fundamental material flaw pdf,
f(c), Equation (3). A much greater disadvantage of a dis-
crete representation is that pointwise differentiation of F(c)
to obtain a discrete estimate of f(c) leads to great scatter
and variability.2 Hence, a continuous “smoothing” function
that describes discrete Pi(σi) and that is amenable to
smooth differentiation is required for substitution as FA(σ)
in Equation (10).

As most ceramic flaw populations are unimodal, the
conjugate strength cdf variations are sigmoidal, although
the sigmoids may not be symmetric about the strength
domain mid‐point. A continuous smooth function with the
flexibility to describe a range of sigmoidal strength cdf
variations is

FðμÞ ¼ μ3p

3
� μ4p

2
þ μ5p

5

� �
; (11a)

where

μ ¼ σ � σμmin

σμmax � σμmin
(11b)

gives the relative strength position within the F(μ) domain.
σμmin and σμmax are empirical fitting parameters, defining
the minimum and maximum strength limits, respectively,
of the smoothing domain and p is an empirical fitting
parameter of order unity that controls the sigmoid symme-
try. σμmin, σμmax, and p are sample‐specific parameters and
hence vary with test component size, geometry, and load-
ing, distinguished from the invariant population characteris-
tics σth, σu, and F(σ). Key properties of F(μ) are F(0) = 0
and F(1) = 1 in accord with Equation (2) and Fʹ(0) =
Fʹ(1) = 0. The shape of the sigmoid within the domain
depends on p but the values and derivatives at the limits
do not change: p < 1 skews the sigmoid to the left (more
concave function), p > 1 skews the sigmoid to the right
(more convex). Equation (11) can be best‐fit to experimen-
tal σ data by selecting optimum bounding values of σμmin

and σμmax to set the location and scale of the cdf and an
optimum value of p to set the shape of the cdf. These steps
and the differentiation to obtain f(c) from Equation (3) are
easily performed numerically, and this was the procedure
here. The Appendix gives more details on Equation (11).

A near‐to‐final step, prior to such differentiation, in
determining a flaw population is to express the best‐fit con-
tinuum representation of measured sample strengths, Equa-
tion (11), in terms of flaw size, thereby connecting the
right and left sides of Equation (10). In the framework
development above, the Griffith relationship between
strength σ and flaw size c was given, Equation (4), charac-
terizing a simple surface crack shown in the schematic dia-
gram of Figure 3A. This flaw type will be used below to
interpret the strength measurements of the first set of cera-
mic materials.

As noted above, the flaw size or magnitude can also be
dimensionless. Here, the dimensionless parameter χ is used
to characterize the variable residual stress field amplitude
locally surrounding a sharp indentation contact flaw. An
indentation flaw, generated by contact load P, Figure 3B,
consists of a residual contact impression contained within
an approximately hemispherical, surface‐localized plastic
deformation zone (shown cross‐hatched) that initiates and
stabilizes cracks via the residual field.8 The residual field
and cracks determine the material strength adjacent to the
flaw.9 The stochastic nature of the contact impression and
plastic zone formation lead to variability in the amplitude
of the residual field and hence strength. This flaw type will
be used to interpret the strength measurements of the sec-
ond set of ceramic materials, as follows. The strength of an
element containing a contact flaw generated by load P can
be expressed by the ideal indentation‐strength relation9

σ ¼ Q

ðχPÞ1=3
(12a)

where Q is a constant with dimensions of [strength]
[force]1/3 involving the element toughness, set by the mate-
rial, and the flaw geometry, set by the manufacturing pro-
cess. The residual stress state of the flaw, characterized by
χ, is also set by the manufacturing process and explicitly
included in the strength expression. A typical value for Q/
χ1/3 = 240 MPa N1/3, such that a flaw generated by a con-
tact load of 8 N corresponds to a strength of σ = 120
MPa.10 It is convenient to re‐express Equation (12a) as

σP1=3 ¼ Q
χ1=3

(12b)

in which the indentation‐strength quantity σP1/3 in Equa-
tion (12b) is contact load invariant and can be used directly
in the estimation of the population of χ values. The similar-
ity of Equations (4) and (12b) is clear and χmin and χmax
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provide limits to the element strengths, including a thresh-
old strength, similar to Equations 5(a) and (b). f(χ) and
F(χ), characterizing the population of χ values at indenta-
tions, are analogous quantities to those involving c.

The first two flaw types were surface flaws, Figure 3A,B.
The next two flaw types are bulk flaws. Near‐spherical pores,
radius R, with surrounding annular cracks were formed dur-
ing sintering of a silicon nitride, the third materials set, Fig-
ure 3C. This flaw type will be used below to interpret silicon
nitride strength measurements, obtained from published
results.11 The pore radius will be used to characterize the flaw
size and the relation to strength is similar to Equation (4)11,12

σ ¼ BR�1=2; (13)

where here B is a constant with dimensions of [strength]
[length]1/2 involving the element toughness, set by the
material, and the flaw geometry, particularly the (annular
crack size)/(pore radius) ratio, set by the manufacturing
process. Rmin, Rmax, f(R), and F(R) characterize the popula-
tion of R values and will be used in comparison with quan-
titative observations.11

Finally, irregularly shaped voids or delaminations, prob-
ably flattened ellipsoid‐like with peripheral cracks, were

formed in the bulk during heat treatment of refractory alu-
mina grains, the fourth materials set, Figure 3D. This flaw
type will be used to interpret strength measurements also
obtained from published results.13 Distinct from the first
three sets of ceramics, which were tested in bending to
generate tension on one surface, this material was tested in
diametral compression between two platens, Figure 3D,
leading to internal transverse tension. The refractory alu-
mina grains consisted of single‐crystal corundum particles
loosely bound to leave internal voids of characteristic
dimension D. The void dimension will be used to charac-
terize the flaw size and the relation to strength is similar to
Equations (4) and (13)

σ ¼ BD�1=2; (14)

where here B is a constant with dimensions of [strength]
[length]1/2 involving the element toughness, set by the
material, and the void geometry, set by the manufacturing
process. Dmin, Dmax, f(D), and F(D) characterize the popu-
lation of D values and will be used in comparison with
qualitative observations.13

3 | EXPERIMENTAL METHODS

Nine ceramic systems were studied here, divided into
four sets consisting of three, three, one, and two groups
of components, respectively. The first set of three groups
consisted of ceramic components with strengths con-
trolled by flaws “intrinsic” to the component fabrication
process: cordierite glass‐ceramic discs containing surface
scratches remnant from polishing; alumina bars contain-
ing side and edge chips and scratches remnant from saw-
ing; and, silicon bars containing predominantly edge
damage remnant from dicing. The second set of three
groups consisted of ceramic components with strengths
controlled by deliberately introduced indention flaws.
Such flaws mimic contact damage generated by scratch-
ing and chipping in component fabrication and encoun-
tered by components at sharp contacts during operation.14

This indented set included: bars of soda‐lime silicate
“window” glass; bars of a spodumene‐based commercial
glass‐ceramic; and, discs of the cordierite mentioned
above. Strength distributions for these first two groups of
ceramics were determined by experimental measurements
(see below). The third set consisted of one group of sili-
con nitride bend bars with strengths controlled by pores
remnant from the sintering process.11 The fourth set con-
sisted of two groups of refractory ceramics: fused and
tabular alumina grains with strengths controlled by inter-
nal voids and delaminations remnant from the thermal
manufacturing process.13 Strength distributions for these

FIGURE 3 Schematic diagrams of strength‐limiting flaws,
applied tension is horizontal. A, Surface crack, length c. B, Surface
indentation, peak load P. C, Bulk pore, radius R. D, Bulk void,
characteristic size D
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last two groups of ceramics were determined by digitiz-
ing reported data.

For the first six ceramic systems, intrinsic and indented,
strengths were measured under inert conditions in the
absence of reactive species such as atmospheric moisture.
For the discs, samples were mounted in a flat‐on‐three‐ball
biaxial flexure test fixture; the radius of the inner, upper
flat was 2.5 mm and the radius of the outer, lower circle
on which the specimens were supported by the three balls
was 13.0 mm. For the bars, test specimens were mounted
in a four‐point uniaxial bending test fixture designed to
minimize any torque on the specimens; the upper span var-
ied from 3.0 to 15.0 mm and the lower span varied from
13.0 to 45.0 mm, depending on the size of the specimen.
In both biaxial and uniaxial geometries, specimens were
loaded to failure in 30 to 50 ms, minimizing any moisture
effects on strength, and failure loads, F, recorded by a
piezoelectric load cell. Disc specimens were examined to
verify that failure had occurred in the uniform biaxial ten-
sile stress region beneath the upper flat. Bar specimens
were examined to verify that failure had occurred in the
uniform uniaxial tensile stress region on the largest face
beneath the upper span. In all cases, failure stresses, or
strengths, σ were calculated from failure loads by σ = αF/
d2, where d is the specimen thickness and α is a geometry
term of order unity that depends on test fixture and speci-
men dimensions.15

The cordierite (2MgO·2Al2O3·5SiO2) was a glass‐cera-
mic material similar to that studied earlier16 with a grain
size of about 5 μm. The samples were in the form of
discs, (29‐32) mm diameter × (1.9‐3.1) mm thick. The
surface of the discs was polished to a reflective optical
finish. In many cases of intrinsic strength measurement, a
failure‐inducing surface scratch was identifiable after test-
ing. The alumina (Al2O3) was a commercial polycrys-
talline material (Coors AD995, Golden, CO) studied
earlier,17 consisting of 99.5% by weight Al2O3 with a
grain size of approximately 5 μm. The material was in the
form of bars 32 × 8 × 0.65 mm thick, sawn to size using
a high‐speed diamond saw and contained sawing damage
on the long edges and small side faces. The large faces
were sintered surfaces. In all cases of intrinsic strength
measurement, failure originated at or near the edge of a
bar, suggesting significant effect of sawing damage. The
silicon (Si) samples were commercial single‐crystal semi-
conductor devices diced to size along (110) from pro-
cessed (001) wafers to produce two sets of bend bars
(14.5 or 16.1) mm × (10.4 or 12.6) mm × 0.73 mm con-
taining dicing damage along the long edges. The large
faces were the processed faces and were placed in tension.
Failure originated at or near the edge of a bar, suggesting
significant effect of dicing damage; for some samples

exhibiting small strengths, scratched surfaces were visible.
One hundred and forty two cordierite intrinsic disc
strengths, 100 Al2O3 intrinsic bar strengths, and 367 Si
intrinsic die strengths were measured.

Prior to strength testing, the silicate glass, the commer-
cial glass‐ceramic, and selected cordierite specimens were
indented in the center of a prospective tensile test face
with a four‐sided Vickers diamond pyramid. Indentation
load P was varied from 1.96 to 294 N. The glass samples
were taken from a commercial soda‐lime silicate plate
sawn into bend bars, 150 × 12 × 5.5 mm thick, and bev-
eled along the long edge. The commercial glass‐ceramic
was a spodumene (LiAlSi2O6)‐based material (Pyroceram
C9606, Corning, New York) obtained as bars 105 ×
6 × 5 mm thick with beveled edges, used previously.18

The large surfaces of the bars were polished to the 1 μm
diamond level to remove any surface stress from prior
machining.18 The cordierite samples were discs as above.
All indented samples were examined after strength testing
to verify that failure had originated at the indentation. One
hundred and fourteen indented glass bar strengths, 67
indented spodumene bar strengths, and 149 indented cor-
dierite disc strengths were measured.

The silicon nitride was a sintered material containing
about 16% sintering aids by mass fraction and about 3%
pores by volume fraction. An extensive pore size distribu-
tion study was completed on the as‐fabricated sintered
material,11 revealing near‐spherical pores with radii ranging
from 1 to 35 μm and that >95% of pores were <5 μm in
radius. Strength measurements were conducted using a
three‐point bend geometry with a span of 30 mm on bars
3 × 4 mm in cross section. Measurements on the fracture
surfaces of the broken bend bars were performed to esti-
mate the radii of the strength‐controlling pores. The refrac-
tory alumina materials consisted of two groups of
irregularly shaped grains representing the extremes of a lar-
ger extensive study.13 Each group was sieved into a narrow
size range: a group of “fused” alumina grains,
3.2 ± 0.1 mm in diameter, and a group of “tabular” alu-
mina grains, 1.2 ± 0.1 mm in diameter. Both groups of
grains consisted of aggregates of finer Al2O3 particles
about 10 μm in diameter, with considerable porosity in the
form of large, irregularly shaped voids between particles
and fine spherical pores within particles. The fused material
contained about 13% additives by mass fraction and was
brown in color, the tabular material contained about 0.5%
additives by mass fraction and was white. Strength mea-
surements were conducted in compression between parallel
platens and fracture surface observations were conducted.
Twenty one silicon nitride bend strengths, 47 fused alu-
mina crushing strengths, and 39 tabular alumina crushing
strengths were digitized and analyzed.
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4 | RESULTS

Figure 4 shows the measured edf strength responses, Pi(σi),
for the three sampled groups of ceramic materials contain-
ing intrinsic surface or edge flaws. The symbols represent
individual strength measurements and all three responses
are sigmoidal, if not fully symmetric. The solid lines repre-
sent visual best fits to the strength responses using the sig-
moidal smoothing function polynomial of Equation (11)
and directly adjusting the σμmin, σμmax, and p parameters
(iterative numerical fitting was not required). The measured
strengths were in the ranges typical of dense ceramics,
200‐800 MPa, and the best fit functions described the mea-
surements typically within ± 10 MPa over the ranges. Fig-
ure 5 shows the population flaw‐size pdf curves, f(c),
deconvoluted from the three strength responses of Figure 4
using the above analysis. B values fix the domains of the
deconvoluted flaw populations: B = 1.4 MPa m1/2 (cordier-
ite), B = 2.5 MPa m1/2 (alumina), and B = 0.75 MPa m1/2

(silicon) were used, reflecting the toughness values of the
three materials. Within the fixed domains, k values set the
shapes of the deconvoluted populations. As the exact val-
ues of k are unknown, a small value is used throughout,
reflecting the likely very small density of strength‐limiting
flaws2 and to enable simple comparisons. k = 2 was used
for all three materials. k variations are discussed below but
do not alter the conclusions.

The population crack length domains in Figure 5 are all
a few tens of μm, typical of dense ceramics and reflecting
the numerical values of the toughness and strengths above.
However, the relative order of the crack length domains for
the three materials is not the same as the strengths, reflect-
ing the different B values (eg, silicon has mid‐range
strength, but the smallest flaw population). A clear feature
of the populations in Figure 5 is that in all three cases f(c)
is asymmetric and significantly skewed to small flaw‐sizes.
The populations consist of a dominant number of small
flaws and an extended tail of large flaws, a feature not
clear from the nearly symmetric strength responses (and
would be enhanced by increases in k). It also appears that
all three deconvoluted populations have small‐flaw non‐
zero minima, eg, about 10 μm in alumina, but there is no
small‐flaw information beyond the end of the curves,
which reflect the strength‐limiting flaws (not all flaws). A
feature not apparent in Figure 5 is that all three deconvo-
luted populations have finite large‐flaw maxima, about
65 μm, at which the extended tails vanish.

Figure 6 shows the measured strength responses, σ(P),
for the three sampled groups of ceramic materials contain-
ing indentation flaws. The symbols represent individual
strength measurements at the indentation loads indicated
and the solid lines represent best fit ideal indentation‐
strength parameters, Equation (12b), of Q=χ1=3ave = 140

MPa N1/3 (soda‐lime glass), 450 MPa N1/3 (spodumene),
and 240 MPa N1/3 (cordierite), where χave are average val-
ues of the residual stress amplitude acting over the indenta-
tion loads used. Although the best fit lines clearly describe
the observations over nearly two orders of magnitude of
indentation load, there are some deviations. Significantly,
at large loads the strength data ranges do not include the
ideal responses, reflecting variable reductions in the inden-
tation stress fields from disrupting lateral cracks and chip-
ping. These effects are most pronounced in soda‐lime
glass and less so in cordierite, Figure 6A,C, respectively.
Figure 7 shows the measured edf indentation‐strength
responses, Pi(σP

1/3), for the three groups of indented mate-
rials using the data of Figure 6. The symbols represent

(A)

(B)

(C)

FIGURE 4 Plots of measured strength edf (symbols) and cdf
best fits (lines) for (A) cordierite glass‐ceramic (surface flaws), (B)
polycrystalline alumina (edge flaws), and (C) single crystal silicon
(edge flaws) [Color figure can be viewed at wileyonlinelibrary.com]
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individual indentation‐strength measurements and all three
responses are sigmoidal but not symmetric. The solid lines
represent visual best fits to the responses using the sig-
moidal smoothing function polynomial of Equation (11); in
two cases, Figure 7A,C, the measured responses were
markedly concave and at small values the responses were
not fully described by the fits.

Figure 8 shows the population residual stress amplitude
pdf curves, f(χ), as functions of χ/χave. These curves were
deconvoluted from the three indentation‐strength edf
responses of Figure 7 using the above analysis and the
best‐fit Q=χ1=3ave values from Figure 6. The indentations
were the known dominant single flaw in the test speci-
mens represented in the strength measurements of Fig-
ures 6 and 7 and hence the ensemble of test specimens
constituted the population of elements. Thus, k = 1 repre-
sents the edf measurements in Figure 7 and was used to
generate Figure 8. The pdf curves in Figure 8 differ from
those in Figure 5 as they represent relative population dis-
persions about the mean value, χ/χave = 1, of the indenta-
tion residual field. The spodumene response is narrow
and close to symmetric with convex wings surrounding a
concave center (bell shaped), reflecting small scatter of
the strength measurements about an ideal response in Fig-
ure 6. The implication is that the amplitudes of the inden-
tation residual fields represented in Figure 6B were nearly
constant. The soda‐lime glass and cordierite responses are
broad and also symmetric but exhibit almost complete
concave behavior, reflecting increased scatter and system-
atic deviation from ideal responses in Figure 6; the devia-
tion is also visible in the abrupt changes in derivative.
The implication here is that the indentation residual fields
represented in Figure 6A,C exhibited significant system-
atic reductions. An interpretation of Figure 8 is that
increased lateral cracking and chipping perturbed a

spodumene‐like response to be more glass‐ and cordierite‐
like through introduction of smaller χ values.

Figure 9A shows the measured edf strength response,
Pi(σ), for the silicon nitride material. The symbols represent
individual strength measurements11 and the response is sig-
moidal. The solid line represents a visual best fit to the
response using the sigmoidal smoothing function polynomial
of Equation (11). Figure 9B shows two measured cdf pore
size responses, F(R), for the material. The dashed line in Fig-
ure 9B represents the observations of over 4000 pores in the
as‐fabricated material.11 The distribution is clearly domi-
nated by very many small pores with R < 5 μm and a few
large pores with R ≈ 20 μm. The symbols in Figure 9B rep-
resent the observations of pores identified as failure sites on
fracture surfaces from strength tests. This distribution repre-
sents only pores with R ≈ 20 μm. The bold solid line and

FIGURE 5 Plots of deconvoluted flaw populations for the three
materials in Figure 4 [Color figure can be viewed at wileyonlinelibra
ry.com]

(A)

(B)

(C)

FIGURE 6 Plots of strength vs indentation load for three
ceramic materials. Solid lines indicate ideal indentation‐strength
behavior. A, SL glass. B, Spodumene. C, Cordierite [Color figure can
be viewed at wileyonlinelibrary.com]
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shaded region in Figure 9B represent the deconvolution of
the strength data in Figure 9A using the above analysis and
bounds of B = (4.15 ± 0.25) MPa m1/2 and k = 1.7 ± 0.3.
The bounds of B are comparable to the toughness of silicon
nitride, about 4.5 MPa m1/2, consistent with the fracture
mechanics of pores.12 The bounds of k, as noted by Chao
and Shetty,11 are much, much less than the expectations from
observations of pore density in the as‐fabricated material.
The implication is that very few of the observed pores consti-
tute strength‐controlling flaws. Chao and Shetty suggest that
large aspect ratios and associated, but un‐observed, cracks
distinguish strength‐controlling flaws from the much greater
number of pores. A similar conclusion was reached regarding
surface roughness on MEMS devices, in which very few of
the observed surface crevices were regarded as strength‐con-
trolling flaws.2 Figure 9C shows the associated pore size pdf
curves from Figure 9B using the same distinguishing nota-
tion for as‐fabricated and failure inducing pores. As sug-
gested, the as‐fabricated pore size population is dominated
by small, sub‐5 μm pores with an extended tail out to 35 μm.
The limits of the strength‐limiting pores at failure are skewed
distributions extending from about 15 to 35 μm. The

implication once again is that only very few of the largest
observed features are flaws.

Figure 10A shows the measured edf strength responses,
Pi(σ), for the two refractory alumina materials. The symbols
represent individual strength measurements13 and the
responses are sigmoidal. The solid lines represent visual best
fits to the responses using the sigmoidal smoothing function
polynomial of Equation (11). The extremes of the measure-
ments are shown, in which larger fused alumina grains are
weaker than smaller tabular alumina grains. Figure 10B
shows the population flaw‐size pdf curves, f(D), deconvo-
luted from the two strength responses of Figure 10A using
the above analysis. The B values were fixed by Equa-
tion (14) such that the smallest strength observed for each
material, about 2 MPa and 17 MPa for fused and tabular,
respectively, led to strength‐limiting void sizes no larger than
the grain sizes, about 3 and 1 mm, respectively. The conse-
quent values were B = 0.11 MPa m1/2 (fused alumina) and
B = 0.58 MPa m1/2 (tabular alumina). k = 2 was used. The
void size populations in Figure 10B are extremely similar;
dominated by voids about 10 μm in size with greatly
extended tails at larger void sizes. The deconvoluted void
sizes are comparable to the observed interparticle fissures13

but much larger than the intraparticle pores, consistent with
the small B values reflecting weak interparticle bonding.
Consistent with the insights of Bertrand et al,13 the fused
material is weaker (less strong, less tough) than the tabular
material, but contrary to the views of Bertrand et al, as the
toughness of corundum (or sapphire) is ≈ 3 MPa m1/2, it
does not appear that the grain fracture behavior is related to
the fracture of sapphire.

5 | DISCUSSION AND CONCLUSIONS

The analysis here has been applied successfully in determi-
nation of underlying flaw populations from measured

(A)

(B)

(C)

FIGURE 7 Plots of measured residual stress edf (symbols) and
cdf best fits (lines) for the three materials in Figure 6. A, SL glass. B,
Spodumene. C, Cordierite [Color figure can be viewed at wileyonline
library.com]

FIGURE 8 Plots of deconvoluted residual stress populations for
the three indented materials in Figures 6 and 7 [Color figure can be
viewed at wileyonlinelibrary.com]

COOK AND DELRIO | 4803

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


sample strength distributions on a wide variety of ceramic
systems. Nine systems—encompassing seven materials,
including glass, glass‐ceramics, single crystal, and poly-
crystals—and four flaw types, including bulk, surface, and
edge—attest to the wide applicability of the methods devel-
oped. In many cases, aspects of the flaw populations
deconvoluted from the strength measurements are in agree-
ment with independent observations, further supporting the
methods. The broadest implication from this work is that

strength distribution measurements are a rich source of use-
ful quantitative information for the ceramic manufacturer
and designer rather than qualitative comparative informa-
tion. Numerical specification of a flaw population enables
quantitative decisions regarding manufacturing yield, relia-
bility prediction, and design outcomes, well beyond the
qualitative inference that “large strengths mean small
flaws.”

The narrower implications of the work apply to specific
ceramic systems. For example, it is clear from Figure 5 that
the population of dicing flaws in silicon is smaller than the
population of sawing flaws in alumina, and that both are
smaller than the polishing flaws in cordierite. As silicon is
less tough than alumina, this observation needs to be true
so that the material strengths and thus the load bearing
capacities of comparably sized components are also compa-
rable—considerations that are important in attaching silicon
dies to alumina substrates in microelectronics manufactur-
ing. Figure 5 enables manufacturing‐related questions such
as “Is the disparity in flaw sizes due to the alumina
microstructure or the silicon dicing procedure?” and “How
can sawing be more benign than polishing?” to be
addressed. Figure 8 makes clear that although indentations

(A)

(B)

(C)

FIGURE 9 A, Plot of measured strength edf (symbols) and cdf
best fit (line) for silicon nitride. Measurements from Chao and
Shetty.11 B, Plot of measured pore size cdf for as‐fabricated (dashed
line) and strength tested (symbols) silicon nitride. Shaded region
indicates bounds on deconvolution from strength measurements.
C, Plot of measured pore size pdf for as‐fabricated (dashed line) and
strength‐tested (solid lines) silicon nitride [Color figure can be viewed
at wileyonlinelibrary.com]

(A)

(B)

FIGURE 10 A, Plot of measured strengths edf (symbols) and
cdf best fits (lines) for refractory alumina grains. Measurements from
Bertrand et al13 B, Plot of deconvoluted void size pdf curves [Color
figure can be viewed at wileyonlinelibrary.com]
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are “controlled” flaws, that populations of indentation flaws
are not all identical in residual stress characteristics. From
a materials‐testing point of view,10 this is acceptable pro-
viding the residual stress is not too small.9 Figure 8 enables
an assessment of the proportion of the test population that
are unacceptable. Figure 10 makes clear that the flaw sizes
in fused and tabular refractory alumina are comparable and
that differences between the two materials reflect different
internal interface characteristics rather than differences of
the constituent crystals.

Figure 9, however, probably has the greatest implication
for interpretations of strength distribution measurements.
Figure 9 includes a direct comparison of the sizes of pores
causing failure with those from the entire as‐fabricated pop-
ulation. It is clear that the pores causing failure are a very
small fraction of the population, reinforcing that, used
alone, observations of populations of suspected strength‐
limiting flaws can be extremely misleading with regard to
strength expectations. The analysis here makes clear that
strength measurements can be used to determine flaw pop-
ulations, exemplified by the experimental agreements in
Figure 9—they are, of course, by definition, the strength-
limiting flaw populations. This distinction is supported by
previous strength measurements on small‐scale silicon
structures, for which roughness observations can greatly
over‐estimate the number of strength‐limiting surface
flaws.2 If the domain of observations is restricted to
strengths, a further, numerical, implication also supported
by the previous observations,2 is that the values of k are
small. The elemental volumes, areas, or lengths containing
single flaws are comparable to typical strength test speci-
men dimensions.

Detailed consideration of the work of Chao and
Shetty,11 summarized in Figure 9, further supports this
point. Chao and Shetty showed that the distribution of lar-
gest pores observed in samples of pores from the observed
population was consistent with an extreme value formula-
tion. The same formulation was used to fit the number of
pores existing in strength tested samples, based on the
observed population and the distribution of measured
strength‐limiting pore sizes. Values of k for the strength
tested samples of 500‐2000 were fit and shown to be con-
sistent with the measured strength distribution based on a
fracture mechanics methodology. The points above regard-
ing strength‐limiting flaw populations were based on the
observation that these fitted values were much less than the
predicted test specimen size of approximately 105. The dis-
parity between the earlier k ≈ 103 value and the small
k ≈ 2 value used here is that the analysis of Chao and
Shetty assumed that the observed pore population was the
strength‐controlling flaw population. In fact, this is in stark
contrast to the point here that a small proportion of the
observed pore population acts as the strength‐limiting

flaws. The ratio of fitted to predicted specimen size sug-
gests that only about 1% of the observed pores contributed
to the strength‐controlling population, corresponding to a
lower bound size for the strength‐controlling flaw popula-
tion of about 13 μm, consistent with Figure 9. Using this
bound and the information in Chao and Shetty gives a fit-
ted k range of about 3.5‐14, much closer to the value
inferred here. Full agreement probably requires greater
experimental knowledge of the relation between strength
and pore size: Chao and Shetty enforced agreement
between the observed pore population and the failure
inducing pore distribution to predict the strength distribu-
tion. Here, agreement was enforced between the strength
distribution and the failure inducing pore distribution to
infer a strength controlling pore population.

Finally, there are two principal methods of verifying
the methodology demonstrated here for future work. The
first, discussed above, is to compare flaw populations
inferred from strength measurements with direct observa-
tion. The second is to compare strength distributions
determined on components of different sizes containing
flaws drawn from the same population. This method is
limited, in that only the ratio of the k values for the com-
ponents is obtainable but engineered test geometries that
constrain k to small values (even 1) such as notches and
single particles, in addition to known size ratios, provide
additional information. Experiments to evaluate exact val-
ues of k, and therefore enable greater confidence in manu-
factured component performance prediction from sampled
strength measurements, must be seen as a priority in this
field.
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APPENDIX A1

BOUNDED POLYNOMIAL PROBABILITY
DISTRIBUTIONS

It is convenient to use simple expressions for the continu-
ous pdf and related cdf such that: (a) relations between the
pdf and cdf are easily expressed; (b) the discrete edf
derived from a sample of a population is easily fit by a
continuous cdf expression; (c) the relations between popu-
lation and sample functions are easily expressed; and, (d)
(probably most important) the expressions describing the
pdf and cdf contain parameters that represent physical
quantities. In consideration of samples of strengths, key
physical quantities are the upper and lower bounds, σu and
σth, respectively, with reversed bounds of the conjugate
flaw size, cmin and cmax.

A simple polynomial pdf expression f(x), where x is a gen-
eral random variable, that meets the requirements above is

f ðxÞ ¼ Aðx� xminÞuðxmax � xÞv; (A1)

where xmax and xmin are upper and lower bounds on the
pdf such that f ðx<xminÞ ¼ f ðx>xmaxÞ ¼ 0, u and v are

FIGURE A1 Plots illustrating behavior of the bounded
polynomial distribution function used to fit strength edf
measurements. A, pdf curves for various values of shape parameter p.
B, Conjugate cdf curves. [Color figure can be viewed at wileyonline
library.com]
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exponents characterizing the shape of the pdf within the
bounds, and A is a normalizing parameter. It is convenient
to re‐express Equation (A1) using a dimensionless scaled
variable μ, with

μ ¼ x� xmin

xmax � xmin
(A2)

such that

f ðμÞ ¼ Aðxmax � xminÞuþvμuð1� μÞv;
making clear that Equation (A1) is functionally equivalent
to the beta distribution, differing only in notation and
normalization.19,20 A minimal specific expression has u =
v = 2, such that Equation (A2) becomes

f ðμÞ ¼ Aðxmax � xminÞ4ðμ� μ2Þ2; (A3)

which describes a symmetric unimodal pdf with values and
derivatives that smoothly vanish at the bounds;
f(0) = f(1) = fʹ(0) = fʹ(1) = 0, a “bell‐shaped” curve, Fig-
ure A1(A), that represents many physical pdfs.

As in Equation (1), the cdf F(x) is related to the pdf by
integration

FðxÞ ¼
Zx

0

f ðx0Þdx0: (A4)

Recognizing that

dμ
dx

¼ 1
ðxmax � xminÞ ;

Equation (A4) becomes, on using Equation (A3),

FðμÞ ¼ Aðxmax � xminÞ5
Zμ

0

ðμ02 � 2μ03 þ μ04Þdμ0

and thus

FðμÞ ¼ Aðxmax � xminÞ5 μ3

3
� μ4

2
þ μ5

5

� �
; (A5)

and is a specific algebraic instance of the incomplete
beta function.19,20 Normalization requires F(1) = 1, such
that A = 30/(xmax−xmin)

5 and thus, Equation (A5)
becomes

FðμÞ ¼ 30
μ3

3
� μ4

2
þ μ5

5

� �
(A6)

and thus, from Equation (A4),

f ðμÞ ¼ 30
ðxmax � xminÞ ðμ� μ2Þ2: (A7)

Equation (A6) describes a function that is antisymmetric
about (1/2, 1/2) with values F(0) = 0 and F(1) = 1 and
derivatives that smoothly vanish at the bounds with Fʹ

(0) = Fʹ(1) = 0, a sigmoidal curve, Figure A1(B), that rep-
resents many physical cdfs.

The applicability of Equation (A6) can be expanded to
asymmetric distributions by generalizing the argument
through the transformation μ↦μp where p > 0 is an empiri-
cal exponent of order unity, such that

FðμÞ ¼ 30
μ3p

3
� μ4p

2
þ μ5p

5

� �
: (A8)

The shape of the sigmoid within the bounds now
depends on p but the values and derivatives at the bounds
do not change. Examples are shown in Figure A1(A,B).
Equation (A8) can be best fit to experimental x data by
selecting optimum bounding values of xmin and xmax to set
the location and scale of the cdf and an optimum value of
p to set the shape of the cdf: these steps are best performed
numerically as is the transformation to obtain f(μ) = dF(μ)/
dμ.

The well‐known Weibull cdf, W, written using the same
notation, is5

WðμÞ ¼ 1� expð�μmÞ: (A9)

There are clear similarities between Equations (A8)
and (A9): the forms are set (polynomial and stretched
exponential) and both generate sigmoidal responses
0 ≤ F, W ≤ 1 over the domain 0 ≤ μ; the location and
scale are both set by the Equation (A2) relating x and μ,
resulting in lower bound 0 ≤ μ; and, the shape is set by
a single parameter (p and m). The differences between the
two expressions lie in the existence of the upper bound
and the interpretation of the lower bound. The polynomial
is upper‐bounded by μ ≤ 1 and F(1) = 1. The Weibull
function is unbounded for large μ: xmax is simply a loca-
tion and scale parameter, μ > 1 is possible and only
asymptotically does W(μ) → 1 for μ ≫ 1. The lack of an
upper bound in the Weibull function does not usually pre-
sent difficulties in a mathematical sense as xmax can sim-
ply be treated as a fitting parameter to describe the
dispersion of x. However, if x is physically related to an
underlying quantity y by the transformation x↦y�w,
(w > 0) the infinite upper bound to x implies a zero
lower bound for y, which may not be physical. In particu-
lar, of relevance here, is the usual inverse quadratic rela-
tionship between strength and flaw size, σ ~ c−1/2, such
that if W is fit to strength data, the resulting flaw size cdf
and pdf expressions include minima of zero. As the
smallest flaws in a population do not usually affect
mechanical performance and their lack of existence is dif-
ficult to disprove this is not an issue. Of more concern is
that in many cases xmin = 0 is selected such that xmax is
reduced to a scale parameter. Although the mathematical
definition of μ is unaffected, in the x, y formalism above
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the zero lower bound to x implies an infinite upper bound
for y that is not physical. In strength‐flaw size considera-
tions, setting a zero lower bound to strength implies an
infinite upper bound to flaw size. Empirically, non‐zero
lower bounds to strength are always observed, consistent
with the fact that all manufacturing processes must use a
finite amount of energy and therefore must generate a
finite upper bound flaw size. Hence, on physical grounds,
the bounded polynomial expression is preferred to the

Weibull expression, although it is not unique. Other
bounded pdf forms giving rise to flexible sigmoidal cdf
expressions (eg, the triangle distribution21) have the same
advantages. Unbounded pdf forms that give rise to flexi-
ble cdf sigmoids (eg, the Gamma distribution5,20) have
the disadvantages of requiring additional parameters to
characterize shape or truncation and although capable of
describing experimental data may not be as easily manip-
ulated analytically as the polynomial expression.
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