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The residual stress field surrounding an elastic-plastic spherical indentation contact in Si is deter-

mined by electron backscatter diffraction (EBSD)-based experimental measurements and expand-

ing hemispherical cavity-based models. The experiments provide support for indentations as test

vehicles for assessment of EBSD as a two-dimensional deformation mapping method but make

clear that selection of coordinate axes is critical to determining the correct representation of a stress

field. The use of principal stress coordinates rather than the conventional Cartesian coordinates is

required in cases in which the direction of the stress field is not aligned with Cartesian axes. In par-

ticular, the use of principal coordinates in the analysis of a spherical indentation stress field in Si

removed misleading artefacts from the Cartesian-based field and revealed only a weak effect of Si

crystalline elastic anisotropy. The experimental results are supported by isotropic and anisotropic

finite element analysis models. https://doi.org/10.1063/1.5055859

Small-scale measurement and mapping of stress and

strain are critical to the design, manufacturing, and operation

of many advanced devices, especially load-bearing compo-

nents (e.g., beams, axles) in microelectromechanical systems

(MEMS) and at thermal expansion mismatched (e.g., metal-

insulator) interfaces in microelectronic components. In par-

ticular, stress distributions adjacent to grain boundary

grooves in polycrystals, localized contacts on surfaces, and

sharp corners at internal edges significantly affect the

strengths of MEMS components,1 thereby limiting

manufacturing yield, operational reliability, and innovation

in design. Recent work has demonstrated the applicability of

electron backscatter diffraction (EBSD) to measuring stress

and strain with sub-micrometer resolution in materials fre-

quently used in MEMS and microelectronics, including sili-

con (Si),2–9 germanium (Ge),10 SiGe,2,11–14 and barium

titanate (BaTiO3).15,16 In some cases, measurements have

been presented as one-dimensional (1-D) line scans across 1-

D structures such as patterned lines, wedge contacts, or elon-

gated domains.3–5,10–12,14–16 In other cases, measurements

have been presented as two-dimensional (2-D) maps of these

and other 2-D, structures, such as pyramidal or spherical

indentations, tensile bars, or thin films.6–9,12,15,16 In all cases,

the line scans or maps have presented components of the

stress, strain, or rotation tensors in Cartesian coordinates. In

most cases, such coordinates provide a clear representation

of the deformation field, as the coordinates are aligned with

a structural feature of interest (e.g., along a wedge contact5).

In some cases, however, Cartesian coordinates provide mis-

leading representations of the field, obscuring the fundamen-

tal physics of structural deformation and impeding an

assessment of the effects of material elastic anisotropy. This

is the case for indentation contacts in Si.6–8

Indentations are of importance as test vehicles in the

assessment of multi-axial deformation states, as quantitative

elements in predicting MEMS component strength, and in

providing insights into the fundamental nature of contact

fields. It is therefore important to have a correct representa-

tion of the indentation deformation field. This Letter extends

a previous work8 to examine the effects of the coordinate

system and elastic anisotropy on the 2-D stress field deter-

mined by EBSD adjacent to an elastic-plastic spherical

indentation in Si. The experimental measurements provide

context for examination of the ability of a spherical expand-

ing cavity model to describe the stress field.

The experimental indentation and EBSD strain measure-

ment methods are described in detail elsewhere.8 Briefly, a

circular residual indentation impression, about 4 lm in diam-

eter and 200 nm in depth, was formed on the (001) surface of

a single crystal Si disc using a conospherical diamond probe

of 5 lm radius at a peak load of 200 mN. The residual defor-

mation field consisted of indentation-localized plastic defor-

mation, largely restricted to a zone beneath the impression,

and extended elastic deformation, including surface uplift,

surrounding the zone and impression. The mean supported

contact stress, the hardness, of Si during such elastic-plastic

indentations is about 10 GPa.1 The peak load was selected to

be small enough, so that no indentation cracks were gener-

ated to potentially perturb the deformation field. The theoret-

ical strength of Si is about 20 GPa and MEMS devices

typically exhibit about 3 GPa strength.1 Electron backscatter

patterns (EBSPs) were obtained in a 128� 128 grid over a

48 lm� 48 lm region surrounding the impression. An EBSP

obtained far from the impression was selected as a reference

and other EBSPs were compared with the reference using

cross-correlation techniques to obtain the deformation field

in terms of the displacement gradient tensor, Aij, at each grid

location. Aij was separated into symmetric, eij, and anti-

symmetric, xij, components, interpreted as infinitesimal

strain and rotation tensors, respectively. The coordinate sys-

tem (i, j) ¼ (1, 2, 3) in the laboratory frame was taken as a

Cartesian set related to the crystallographic frame by (1, 2,

3) ¼ ( 110½ �; 110½ �; ½001�). Full depictions of eij and xij are

given in the supplementary material for 10 lm� 10 lma)Author to whom correspondence should be addressed: robert.cook@nist.gov
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regions encompassing the impression and are similar to those

given previously for Vickers indentation.6,7

Figure 1 shows 10 lm� 10 lm color-filled contour

maps of the r11, r12, and r22 components of the stress tensor

in the above [110]-based laboratory frame. The stress and

strain tensors in the crystallographic frame (denoted r�ij and

e�ij) are related by r�ij ¼ cijkle�kl, where cijkl is the elastic stiff-

ness tensor in the crystallographic frame, and the Einstein

summation convention is used. In cubic Si, the only non-

zero elastic stiffness components in the crystallographic

frame are c11 ¼ 167.4 GPa, c12 ¼ 65.2 GPa, and c44

¼ 79.6 GPa,17 using the Voigt contracted matrix notation.

Stresses in the crystallographic and laboratory frames are

related by a simple rotation transformation. The EBSD tech-

nique assumes that the surface is free of normal traction,10

r33 ¼ 0, and, experimentally, the other traction components

are also negligible, r13 � r23 � 0. The gray discs in Fig. 1

cover the contact impression from which no stress informa-

tion was obtained. Some expected features of these indenta-

tion maps include: that stress values remote from the

indentation are not sufficient to cause plastic deformation or

fracture; that there are dominant lobes of negative stress

associated with the compressive effects of forming the

indentation impression in the surface; and the extent of the

lobes to about three indentation diameters.18 An additional

clear feature of the maps of Fig. 1 is that all stress tensor

components exhibited lobes of positive and negative values

and two-fold symmetry—features in common with previous

maps of strain tensors about indentations6–8 (see supplemen-

tary material) and superficially at variance with the four-fold

elastic symmetry of the [001] axis and Raman spectroscopy-

based maps of stress8 [rotation tensor components exhibited

four-fold symmetry and mirror planes6,7 (SM)]. Use of crys-

tallographic [100]-[010]-[001] coordinates rotates and alters

the shape of the lobes, but does not alter the symmetry of the

stress or strain maps. The lobes of Fig. 1 and elsewhere give

a somewhat misleading impression of the nature of the

indentation stress field and the influence of the elastic anisot-

ropy of Si. Specifically, as exemplified in Fig. 1 and ear-

lier,6–8 (SM) the lobes of the normal stress or strain

components are aligned with the (1, 2) coordinate axes used

and the lobes of the shear components are rotated p/4 rad

about the 3-axis from the (1, 2) axes.

The origin of the indentation stress field and the effects

of elastic anisotropy were further investigated by developing

a finite element analysis (FEA) model of the indentation

plastic deformation zone and the surrounding elastically

deformed material. The plastic zone was modeled as an

expanding cavity-like hemisphere18 of 4 lm initial diameter

imbedded in the (001) Si surface, with hydrostatic initial

strain, e11 ¼ e22 ¼ e33 ¼ 0.03. Two material models were

implemented: the first material model was elastically isotro-

pic Si using a Reuss-average isotropic Young’s modulus of

E¼ 159 GPa and a Poisson’s ratio of � ¼ 0.23;19 the second

material model assumed elastically anisotropic Si using the

same stiffnesses cIJ given above. FEA was performed with

Abaqus.20,21 Elastic behavior incorporated geometric nonlin-

earity via logarithmic (“true”) strains, but did not incorporate

material nonlinearity. The modeled volume spanned 200 lm,

much larger than the span of the stressed area surrounding

the indentation, about 20 lm, and the indentation contact,

4 lm. The mesh consisted of 557 000 quadratic tetrahedral

(C3D10) elements arranged in an adapted mesh. When com-

pared with a coarser mesh of 214 000 elements, the relative

root-mean-square stress difference was less than 1%. Stress

components were calculated in material cubic coordinates

and converted to laboratory coordinates for comparison with

experimental data.

Figure 2 shows maps of the r11, r12, and r22 compo-

nents of the stress tensor determined from the isotropic FEA

model using the same spatial and stress scales as Fig. 1.

Comparing the two figures, the similarity of the shapes, ori-

entations, and scales of the stress lobes is striking, suggesting

FIG. 1. Experimental EBSD measurements represented as color-filled con-

tour maps of the major stress components surrounding a spherical indenta-

tion in (001) Si.

FIG. 2. FEA modeling represented as color-filled contour maps of the major

stress components surrounding a spherical indentation represented by a

hemispherical expanding cavity imbedded in an isotropic solid.
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three conclusions: (i) the magnitudes of the imposed initial

strains and the hemispherical size and shape were appropri-

ate representations of the plastic deformation zone (and com-

parable to previous similar models and observations5,7,22);

(ii) to first approximation, the residual stress field surround-

ing an indentation in Si is described by a zone of hemispheri-

cal expansion imbedded in an isotropic medium; and (iii) the

lobes of stress cannot be related to elastic symmetry of the

indented isotropic material, but related to the choice of coor-

dinate axes. Figure 3 shows the same stress components

determined from the anisotropic FEA model and reinforces

these conclusions. The major lobes of stress are slightly elon-

gated relative to those determined from the isotropic model

(Fig. 2) and a better representation of the experimental

observations (Fig. 1), but the similarities of shape, orienta-

tion and scale of Figs. 1 and 3 are clear. In these cases, the

two-fold symmetric lobes of stress cannot be related to the

elastic symmetry of the indented anisotropic material as the

[001] indentation axis is four-fold rotationally elastically

symmetric.

An unbiased assessment of the stress state can be made

using the minimum and maximum principal stress compo-

nents,23 shown in Fig. 4 using the same scales as Figs. 1–3.

Figures 4(a) and 4(b) show the principal stress components

resulting from the isotropic FEA model. The minimum prin-

cipal stress, Fig. 4(a), is completely compressive and the

maximum principal stress, Fig. 4(b), is completely tensile.

As anticipated for an isotropic material, the magnitudes of

the principal components exhibit no angular dependence and

the contours are concentric circles: those of the maximum

principal stress are slightly smaller in diameter. The maxi-

mum principal stress directions (not shown) also form con-

centric circles [similar to Figs. 4(a) and 4(b)]. Figures 4(c)

and 4(d) show the minimum and maximum principal stress

components, respectively, resulting from the anisotropic

FEA model. As in the isotropic case, the minimum and

maximum principal stresses are also completely compressive

or tensile. In this case, however, the magnitude of the mini-

mum principal stress exhibits angular anisotropy, forming a

rounded diamond shape, Fig. 4(c). The magnitude of the

maximum principal stress again exhibits essentially no

apparent angular anisotropy, Fig. 4(d), forming near circles.

Also, again, the directions of the maximum principal stress

form near circles. Figures 4(e) and 4(f) show the magnitudes

of the principal stresses determined from the experimental

stress measurements (Fig. 1). The minimum and maximum

principal stresses are completely compressive and tensile,

respectively, and the magnitudes of the minimum and maxi-

mum principal stresses form rounded diamond shapes and

circles, respectively. The circles of maximum principal stress

are somewhat smaller than the diamonds of minimum princi-

pal stress. The similarity of the anisotropic model results,

Figs. 4(c) and 4(d), and the experimental measurements, Figs.

4(e) and 4(f), is clear. In particular, the four-fold elastic sym-

metry of the system is indicated in the minimum principal

stress rounded diamond contours. The maximum principal

stress directions are weakly perturbed circles: the majority of

the principal stress directions in the experiment and the aniso-

tropic model were within 64� of those of the isotropic model.

A somewhat unbiased assessment of the stress state can

also be made using the radial and circumferential compo-

nents of cylindrical polar coordinates, although an axis of

rotation—the center of the indentation—must be selected.

Using cylindrical polar coordinates here resulted in maps

(not shown) almost identical to those of Figs. 1 and 4(e) and

4(f), consistent with the almost complete separation of radial

compression and circumferential tension about the indenta-

tion impression. Using a “traceless” initial strain tensor to

represent an ideally plastic indentation process within the

FIG. 3. FEA modeling represented as color-filled contour maps of the major

stress components surrounding a spherical indentation in (001) Si represented

by an imbedded hemispherical expanding cavity. Compare with Fig. 1.

FIG. 4. Color-filled contour maps of the principal stress components sur-

rounding a spherical indentation: (a) and (b) determined by modeling an iso-

tropic solid, Fig. 2; (c) and (d) determined by modeling anisotropic Si, Fig.

3; and (e) and (f) determined by experimental EBSD measurements, Fig. 1.
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hemispherical zone, such that e33 ¼ �2e11 ¼ �2e22, resulted

in maps almost identical to Figs. 3 and 4(c) and 4(d), sugges-

ting that the residual stress field results almost entirely from

radial expansion and is little affected by axial effects normal

to the free surface. Using a greater hydrostatic initial strain

of e11 ¼ e22 ¼ e33 ¼ 0.05 resulted in the enlargement of all

the modelled stress contours, such that the agreements

between Figs. 1, 3, and 4 were removed, suggesting that a

detailed comparison of the model and the experiment could

be used to infer the extent of plastic deformation in the zone.

A key point in the work here, not to be overlooked in

considerations of anisotropy, is that Figs. 4(e) and 4(f) pro-

vide direct experimental evidence of the residual stress field

exterior to an elastic-plastic contact impression. A sub-point

is that in order to generate a residual stress field, the contact

need not be “sharp” in the sense of contact acuity, so long as

the strain imposed by the contact is at least partially accom-

modated in the material by localized plastic deformation.

This was the case here: a spherical contact was deep enough

to generate a plastic deformation zone in Si. The importance

of residual stress fields is that they act to initiate and propa-

gate cracks from nascent defects generated in the plastic

zone. Transmission electron microscopy can identify such

defects.22 However, EBSD, as used here (or Raman spectros-

copy8), is required to quantify the residual (tensile) stress

field, and fracture mechanics can then be used to make pre-

dictions of the strength of MEMS1 and other devices. The

FEA model used here and earlier5 treated the plastic defor-

mation zone as a region of homogeneous initial strain. EBSD

measurements can be used to calibrate this strain (here 0.03)

and the model then extended to predictions of crack propa-
gation adjacent to contacts of varying geometry. A model for

indentation crack initiation, however, requires explicit con-

sideration of inhomogeneous strain and defect generation

beneath the contact, such as a cohesive-zone-based FEA

model applied earlier in consideration of cracking and strain

at a Vickers indentation.7

Finally, the observations here, represented in principal

rather than Cartesian coordinates, make clear that the resid-

ual stress field associated with [001] spherical indentation in

Si is four-fold rotationally symmetric, consistent with Si

crystallography. The symmetry is most clearly observed in

the minimum (compressive) principal stress that exhibits

maxima in the h110i directions, along the directions of the

chains of Si atoms in the structure and hence directions of

the greatest resistance to elastic deformation. Conversely,

the elastic anisotropy is only weakly observed, if at all, in

the maximum (tensile) principal stress that exhibits a near

circular symmetry. An important conclusion thus is that the

significant tendency to h110i indentation cracking (surface

traces aligned with image edges in Fig. 4) for [001] indenta-

tions reflects the smaller fracture surface energy for {110}

planes relative to other planes in the [001] zone and fewer

bonds perpendicular to the chains of atoms1 rather than stress

field anisotropy. Although Raman spectroscopy-based stress

field maps, which are determined by the entire stress or strain

tensor,24,25 can also reflect the symmetry of the material,8

principal stress analysis is still required to obtain unambigu-

ous driving forces for deformation and fracture.

See supplementary material for “raw” strain and rotation

data in laboratory Cartesian coordinates as the basis for

stress analysis in principal coordinates.
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